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ABSTRACT  

The successful application of MRM in biological specimens raises the exciting possibility that assays can be 

configured to measure all human proteins, resulting in an assay resource that would promote advances in 

biomedical research. We report the results of a pilot study designed to test the feasibility of a large-scale, 

international effort in MRM assay generation. Across three performance sites, 645 novel MRM assays 

representing 319 proteins expressed in human breast cancer were configured, validated, and made publicly 

available as a resource for the community. Assays were multiplexed in groups of >150 peptides and deployed 

to quantify endogenous analyte in a panel of breast cancer-related cell lines. Median assay precision was 

5.4%, with high inter-laboratory correlation (R2 >0.96). Peptide measurements in breast cancer cell lines were 

able to discriminate amongst molecular subtypes and identify genome-driven changes in the cancer proteome. 

These results establish the feasibility of a scaled, international effort. 

 

INTRODUCTION 

 Rapid advances in technology have enabled extraordinarily deep proteomic coverage1, 2. This deep 

coverage comes at the expense of throughput, due to extensive sample processing requirements. Thus, for 

interesting discovery proteomic leads to be actionable, investigators must be able to verify the results in larger 

clinical or biological studies3, requiring targeted methods of analysis enabling higher throughput. Unfortunately, 

conventional technologies (e.g. ELISA, IHC, Western blotting) are low in throughput, unable to avoid 

nonspecific interferences, not routinely multiplexed, not quantitative (aside from ELISA), and do not use 

internal standards (and thus are not readily standardized across laboratories)4.  Thus proteomics currently 

lacks critical tools required for success. 

 Multiple Reaction Monitoring (MRM) Mass Spectrometry (MS) is positioning itself to dramatically improve 

quantitative proteomics. MRM-MS is an assay platform used for decades in clinical reference laboratories to 

quantify small molecules5 (e.g. metabolites in newborn screening) and is being rapidly taken-up by the biology 

and clinical research communities for quantifying peptides released via proteolysis of biospecimens6, 7. MRM-

MS was recently selected as the “method of the year” by Nature Methods8, given its potential to promote rapid 

advances in protein-based research, potentially replacing Western blotting and providing the critical missing 

link between discovery proteomics and downstream implementation of proteomic findings9, 10. 

 MRM-MS is a targeted technique that is completely different from the mass spectrometry approaches 

widely used in discovery proteomics. MRM is performed on specialized instruments that enable targeting of 

specific analyte peptides of interest and provides exquisite specificity and sensitivity11-14. Background 

interferences can be detected and avoided, and the use of spiked-in, stable isotope-labeled standards enables 

precise relative quantification of endogenous analytes in commonly used biospecimens15. The National Cancer 

Institute has invested heavily in the standardization and analytical validation of MRM-based quantification of 

peptides through its Clinical Proteomic Tumor Analysis Consortium (CPTAC)16, which has demonstrated robust 

analytical performance for MRM analyses across laboratories and instrument platforms17. 
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 For the MRM-based assay technology to meet its potential to promote rapid advances in protein-based 

biomedical research, the ability to run MRM-based assays to quantify any human protein (with sufficient 

sensitivity and throughput) must be made readily available to the target user community (i.e. basic and 

translational scientists) in the form of validated assays that can be run in individual laboratories or readily 

implemented in proteomic core facilities. Towards this end, global assay development projects have been 

proposed18-21, and peptide spectral databases22, 23 (e.g. http://www.srmatlas.org) as well as open-source, 

vendor-neutral software tools24-28 (https://panoramaweb.org) are being rapidly developed to support such 

efforts. 

 The purpose of this study was to test the feasibility and usefulness of a large-scale, international 

collaborative effort in MRM-MS assay generation targeting the human proteome, modeling what a global assay 

development effort might look like. Our approach was to develop a panel of 645 MRM assays covering 319 

proteins (~1.5% of the basic human proteome) differentially expressed amongst human breast cancer 

subtypes  from start to finish (i.e. including reagent generation, assay development, analytical validation, assay 

deployment on biospecimens, and distribution of data and SOPs as a community resource) using state-of-the-

art technology and multiplexing capabilities. The results demonstrate feasibility of an international, scaled 

project to develop MRM assays to all human proteins. We also demonstrate that MRM-based targeted 

proteomic measurements can recapitulate known biological subtypes of breast cancer, identify genome-driven 

changes in the cancer proteome, and provide complementary information to that encoded in mRNA or copy 

number profiles. 

 

RESULTS 

Empirical selection of targets 

 To model what an international global assay development effort might look like, 3 performance sites 

(Seattle, Boston, and Seoul) cooperated to develop 645 MRM assays representing 319 target proteins 

expressed in human breast cancers. Breast cancer was chosen as a model system because extensive 

genomic characterizations have been used to describe well-defined molecular subtypes29-31 and because a 

panel of highly characterized breast cancer cell lines32-34 was readily available for the study. Although we 

focused on breast cancer (and on cell lysates) to provide a framework for this pilot, the assays we developed 

are limited neither to application in cell lysates nor to breast cancer; they are generalizable.  

 To generate an empirical dataset for selection of target analytes for MRM assay development, 

unfractionated protein lysates derived from a panel of human breast cancers and breast cancer-derived cell 

lines (Supplementary Table 1) were analyzed by shotgun LC-MS/MS analysis. Over 64,000 unique peptides 

(representing 9,996 proteins) were identified at a peptide FDR < 0.005 in the combined cell line and tissue 

data. To enrich for targets that might vary in expression level amongst breast cancer subtypes and thus be of 

biological interest, potential MRM targets were rank-ordered by differences in their signal intensities amongst 

the breast cancer subtypes represented in the cell line panel, and identification was required in both the cell 

http://www.srmatlas.org/
https://panoramaweb.org/
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lysate and corresponding cancer tissue. Finally, a target list for MRM assay development was constructed from 

the filtered list of peptides that were detectable from neat cellular lysate by MRM on a triple quadrupole mass 

spectrometer. From this rank-ordered list, a set of 318 proteins (represented by 642 proteotypic peptides) were 

selected for assay development (Supplementary Table 2). These proteins were shown to be enriched for 

breast cancer-specific targets as 73 of these 318 proteins (23%) were also included in a list of 1000 genes of 

potential functional importance in breast cancer 35. Although not observed by shotgun LC-MS/MS analysis, 3 

peptides to ESR1 were also included, for a total of 319 proteins represented by 645 proteotypic peptides. The 

selected proteins map to a variety of cellular compartments and span a range of biological processes, as 

shown in Supplementary Figure 1. 

 

Development and characterization of multiplexed assays 

 For each analyte, synthetic light and heavy stable isotope-labeled peptides were prepared, and optimum 

MRM transitions and instrument parameters were determined as described in the online methods. The 645 

individual peptide assays (Supplementary Table 2) were distributed randomly amongst 4 multiplex assay 

groups (each containing between 156 and 169 peptides). To avoid any bias for performance amongst assay 

groups, we ensured that each multiplex group contained an equivalent distribution of analyte intensities and 

retention times (Supplementary Figure 2) in addition to LLOQs and CVs (see below and Supplementary 

Figure 3). One of the multiplex assays was randomly chosen to run at all 3 performance sites (the “inter-

laboratory” assay), whereas each of the remaining 3 multiplex assays were run at only 1 performance site (the 

“site-specific” assays). 

 The analytical performance of the assays was evaluated at each site by generating response curves in a 

cell lysate matrix. For the 645 peptides in the study, 1,938 individual reverse response curves were generated 

[(483 site-specific assays + 486 inter-laboratory assays = 969 total) x 2 matrix dilutions]. All response curves 

are displayed in Supplementary Appendix A, and assay figures of merit are reported in Supplementary Table 

3. The majority of assays featured a linear range >3 orders of magnitude. The median assay LLOQs for the 

inter-laboratory assay group were 0.40, 0.61 and 0.52 fmol/ug (at a cell lysate matrix protein concentration of 

1.0 ug/uL), with median CVs of 3.5%, 5.0% and 4.4% for sites 1, 2, and 3, respectively. At this concentration, 

the site-specific assay groups had median assay LLOQs of 0.37, 0.65 and 0.40 fmol/ug, with median CVs of 

3.5%, 5.4% and 4.4% for sites 1, 2, and 3, respectively. 

 An assay was deemed successful if it was precise (%CV ≤ 20% at the lowest concentration point in the 

linear range of the assay) and specific (detection of ≥ 1 transition of the light and ≥ 2 transitions of the heavy 

peptide and perfect co-elution of heavy and light peptides). Of the 645 assays attempted, 622 (96%) met these 

criteria and were considered to be successful. Furthermore, 599 (93%) had ≥ 2 transitions and 534 (83%) had 

all three transitions meeting these criteria. 

 



5 
 

Deployment of the assays in complete process triplicate to evaluate a panel of 30 human cell lines 

related to breast cancer 

 Next, we determined the robustness of the assays when deployed in a common biological setting, 

characterizing human cell lines. Protein lysates from 30 human cell lines representing breast cancer (or normal 

breast epithelial cells; Supplementary Table 1) were prepared at a single site and distributed to all 

performance sites for MRM analysis (Figure 1). Each lysate was digested in triplicate, so assay variability 

incorporates the complete processing variability. 

 A total of 174,420 individual assays were run [(483 site-specific assays + 486 inter-laboratory assays = 969 

total) x 30 cell lines x triplicate process replicates x 2 dilutions]. An assay was considered to be informative if 

the empirically determined concentration of the analyte was above the assay LLOQ (i.e. indicates sufficient 

sensitivity); 93% (897 of 969) of the assays attempted met these criteria.  Endogenous analyte was measured 

for all 319 proteins. At the individual peptide level, 609 out of 645 peptides (94%) were detected in at least one 

cell line and 547/645 (85%) were measured in at least half of the cell lines. The empirically determined 

endogenous levels for each measurement above the analyte LLOQ are plotted in Supplementary Figure 4. 

Transitions measured for each analyte with no interference in any cell line are reported in Supplementary 

Table 4, and all peptide concentration measurements are reported in Supplementary Table 5.  The empirical 

concentrations of the endogenous peptides derived from the same protein showed very high correlation 

(median of 0.93) in the individual cell lines (Supplementary Figure 5). 

 To evaluate precision, the CV across the complete process triplicates was calculated for all endogenous 

measurements above the LLOQ (Supplementary Table 6 and Supplementary Figure 4). The distributions of 

CVs for all measurements across the three sites are shown in Figure 2. At the three sites, the median assay 

CVs for the inter-laboratory assay group were 5.0%, 7.3% and 5.1%, with 95% of the results having CVs less 

than 15%, 25% and 17% for sites 1, 2, and 3, respectively (Figure 2a). The site-specific assay groups had 

median assay CVs of 4.7%, 6.3% and 4.7%, with 95% of the results having CVs less than 14%, 20% and 17% 

for sites 1, 2, and 3, respectively (Figure 2b). The median CV for all measurements was 5.4%. 

 The empirically determined endogenous concentration of all analytes constituting the inter-laboratory 152-

plex assay, which was run at all 3 laboratories, was used to determine the correlation and agreement across 

the performance sites. Those measurements that were above the LLOQ at ≥2 sites (90% of measurements) 

were compared to determine the reproducibility of the measurements across sites. The correlation was 

excellent, with correlation coefficients ranging from 0.96 to 0.99 (Figure 2c). There was also excellent 

agreement in the results amongst the sites, as demonstrated by the slopes from the linear regression of the 

correlation plots, which ranged from 0.95 to 1.07. To further examine the agreement, a histogram of the 

percent difference between site measurements is shown in Figure 2d. The mean percent difference was 0.9%, 

with 95% percent of the data within 22% difference and 75% percent of the data within 6.6% difference.  

 

MRM results recapitulate the known molecular subtypes of breast cancer 
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 The empirically determined MRM-based measurements of 319 proteins were used for hierarchical 

clustering of the 30 cell lines. As shown in Supplementary Figure 6, the cells lines formed 2 major clusters. Of 

note, the clusters based on the MRM data exactly match the clustering results previously observed for these 

cell lines using mRNA levels32-34 (into luminal and basal subtypes, largely correlated with estrogen receptor 

(ER) expression), demonstrating that MRM-based analyses can recapitulate the known molecular subtypes of 

breast cancer. 

 

MRM results provide information not encoded in gene expression profiles 

 We next asked whether the MRM data revealed any novel information about breast cancer that could not 

be determined using the genomic profiles of the cell lines. First, to identify proteins that are differentially 

expressed amongst the molecular subtypes of breast cancer, a Wilcoxon rank test was performed using the 

MRM dataset. When the false positive rate36 (FDR) was controlled at 0.01, 4 proteins were found to be 

differentially expressed between Her2+ vs. Her2- cell lines, 83 proteins were differentially expressed between 

ER+ vs. ER- cell lines, and 118 proteins were differentially expressed between basal vs. luminal cell lines 

(Supplementary Table 7). 

 To determine if similar association patterns for this set of proteins can be observed based on their gene 

expression (mRNA) data (or if the proteomic data provided novel information), we made use of the genomic 

data of Neve et al. (2006)33, which contains gene expression arrays for 28 of the 30 cell lines examined in our 

project. A total of 232 proteins quantified by MRM in this study also had corresponding gene expression 

measurements. A comparison between the sets of genes showing subtype-association at the mRNA (p-value ≤ 

0.01) and the proteomic (using Wilcoxon rank test, FDR cutoff ≤ 0.01) level illustrates that candidate markers 

could be identified using the MRM/proteomic data that were not detected based on RNA expression profiles. 

Two, 7 and 11 genes showed RNA expression levels significantly associated with Her2, ER and Basal/Luminal 

status, respectively, and did not show the same association patterns in their protein abundances, while 0, 44, 

and 57 genes showed protein abundances significantly associated with Her2, ER, and basal/luminal status, 

respectively, and did not show the same association patterns in their RNA expression signatures. These 

discrepancies demonstrate that protein profiling provides complementary information to genomic data. Figure 

3 (a-c) illustrates the associations based on RNA and protein measurements for the significant gene sets. To 

further demonstrate the complementary information that protein profiling provides, we focused on the 71 genes 

whose protein abundances were significantly associated with Her2, ER, or basal/luminal status but whose RNA 

expression levels were not (i.e. the protein and mRNA data were discordant). Of these 71 genes, 28 are 

believed to be functionally important in breast cancer, based on their inclusion in an independently curated set 

of 1000 human proteins of relevance to human breast cancer35. This example demonstrates that information 

encoded at the proteomic level is different from that at the mRNA level, where no subtype-specific regulation of 

expression was observed. The number of significant genes associated with the different subtypes, as well as 
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their association with breast cancer, is illustrated in Supplementary Figure 7. Detailed results for all of the 232 

genes can be found in Supplementary Table 7.  

 

Integrative genomics/proteomics analysis helps to pinpoint potential disease genes 

 In prior studies of breast cancer, hundreds of genes were found to be associated with patient prognosis at 

the RNA expression level37-39. Although these data suggest candidates, they are not sufficient to identify the 

primary drivers of clinical behavior of tumors, and many of these mRNA expression differences are not 

translated into differences at the protein level. Given the complementary information obtained from the mRNA 

and MRM proteomic results, we hypothesized that proteomic analyses may help identify clinically significant 

changes. The rationale for this hypothesis is twofold: i) changes observed in multiple independent datasets 

using orthogonal technologies (i.e. genomics and proteomics) are less likely to be false positives, and ii) having 

protein-level data should greatly augment the interpretation of genomic profiles by identifying changes that are 

ultimately expressed in the proteome, closer to the clinical phenotype. 

 We performed an integrative analysis and identified 31 genes that show significant correlation (Bonferroni 

adjusted p-value ≤ 0.0001) between the genomic33 (i.e. DNA copy number and mRNA expression) and 

proteomic (MRM) data. Furthermore, amongst the 4 proteins associated with Her2 status (Supplementary 

Table 7), 2 have DNA copy number and gene expression information available, and both proteins (ERBB2 and 

GRB7) show significant concordance between genomic and proteomic signatures. Amongst the 118 proteins 

associated with basal/luminal status, 30 have corresponding genomic data, and only 10 (ABAT, ANXA1, 

PLOD3, CDKN2A, ERBB2, GALK1, CLTC, PRDX3, ALDOA and DPYSL2) show significant concordance 

scores. Amongst the 83 proteins associated with ER status, 20 have corresponding genomic data, and only 5 

(CLTC, PRDX3, ANXA1, ABAT, and PLOD3) show significant concordance scores. The genomic and 

proteomics signatures of these 11 unique genes/proteins (ERBB2, GRB7, CLTC, PRDX3, ANXA1, ABAT, 

PLOD3, CDKN2A, GALK1, ALDOA and DPYSL2) are illustrated in Figure 4, and detailed results of the 

concordance analysis are provided in Supplementary Table 8. Proteins whose expression is primarily 

regulated by gene expression showed agreement of measured protein levels to mRNA levels. 14 genes were 

identified with protein levels significantly correlated with its own gene expression (correlation > 0.7 and the 

Bonferroni adjusted p-value < 0.01). In other words, we can view this as a subset of genes whose protein 

expressions are primarily regulated by RNA expression. Of these, 2, 7, and 3 genes have protein abundances 

significantly associated with Her2, ER, and basal/luminal status, and 2, 4 and 2 respectively, showed the same 

association patterns in their RNA expression signatures.  There were no genes measured showing RNA 

expression levels significantly associated with Her2, ER and Basal/Luminal status which did not also have 

significantly associated protein abundances. Based on the above result, we conclude that the concordance of 

protein and mRNA levels for the subset of proteins whose expression is primarily regulated by gene expression 

is high, but not perfect. 
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 Although the importance of amplification of the Her2/ERBB2 locus (which also contains GRB7) in breast 

cancer is well established40, the clinical relevance of the other 9 genes is not known. As it has been shown that 

the genomic profiles of the cell lines in this study closely recapitulate those of primary breast cancers33, we 

next tested whether these nine genes’ expression levels were associated with outcome in 2 independent 

breast cancer datasets (referred to as van 't Veer et al.41 and Loi et al.42 datasets, respectively) that provide 

both survival outcome and genomic profiles for large sets of primary human breast cancers. When patients 

were stratified by either high or low expression levels for each of the 9 candidate genes, significant differences 

between Kaplan–Meier (KM) survival curves of the 2 patient groups were observed in both datasets for CLTC, 

DPYSL2 and ABAT (Figure 5). We next fit a multivariate cox proportional hazard model to further assess the 

association between gene expression and survival outcome, accounting for molecular subtype (PAM50)43, age, 

tumor size, lymph node status, and other clinical covariates (Supplementary Table 9). Again, CLTC and 

DPYSL2 were found to be significantly associated with survival outcome (p-valueCLTC=0.029, 0.068 and p-

valueDPYSL2=0.067, 0.0048 in the 2 clinical datasets, respectively). ABAT showed evidence of association with 

survival outcome in the Loi et al. dataset (pvalueABAT=0.012), but not in the van 't Veer et al. dataset. In 

summary, as a proof-of-principle, the above results illustrate the potential advantage of integrating quantitative 

proteomic data with genomic data to improve our understanding of which of the multitude of genomic 

alterations are most likely to be translated to the protein level, and thus most likely to contribute to clinical 

phenotypes. 

 

DISCUSSION 

 Targeted proteomic assays covering the entire human proteome would alter the state of clinical and 

biomedical research, promoting rapid advances in protein-based biomedical research by allowing for better 

translation of basic findings into actionable results. To be useful, such assays must be easily implemented 

anywhere, with minimal adjustments, while maintaining a high level of performance.  

 All MRM assays developed in this study, including standard operating protocols (SOPs) for sample 

preparation and analyte-specific instrument parameters for data acquisition, have been made freely available 

as a resource for the community (see online methods). Each assay underwent rigorous analytical 

characterization and determination of analytical figures of merit, ensuring high quality standards for assay 

performance, as well as fit-for-purpose validation for the interrogation of human cell lines. The majority of 

academic centers now have proteomic core facilities with instrumentation to implement MRM-based assays, 

and all assays developed in this study are readily implementable in such facilities using the SOPs and Skyline 

files provided in the supplemental materials. Furthermore, the cell lysate sample preparation is straightforward, 

does not require specialized equipment or expertise, and thus can be easily implemented in any modern 

biology laboratory. Although we have focused on breast cancer (and on cell lysates) to provide a framework for 

this study, the assays we develop are limited neither to application in cell lysates nor to breast cancer; they are 

generalizable. 
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 The portability of MRM assays across laboratories and instrument platforms has been previously 

demonstrated in smaller studies aimed at a limited number of peptide analytes quantified by MRM-MS 17, 44, 45. 

In the present study, we substantially extend the work by demonstrating key requirements for a scaled effort, 

including a substantial increase in the number of assays configured, an unprecedented level of multiplexing 

analytically validated assays with internal standards (essential for a scaled effort), and successful international 

transfer of assays. Strict adherence and attention to SOPs enabled the assays to be highly reproducible, 

demonstrating international transferability of MRM assays, and thus the potential usefulness of a global MRM 

assay resource to the international community. 

 Of great interest and use to clinically-driven research, peptide measurements in individual breast cancer 

cell lines were able to discriminate between molecular subtypes, identify genome-driven changes in the cancer 

proteome, and provide information about cancer cell lines that was not encoded in genomic profiles. This 

demonstrates that panels of MRM assays can effectively contribute to biological characterization of molecular 

subtypes of cancer. Implementation of the assays to clinical samples (i.e. tumor tissue) will require overcoming 

at least two challenges: the limited yield of protein from a biopsy or surgical specimen and the 

microheterogeneity of cell types encountered in tumor tissue samples. The protein yields from core biopsies 

range from 80 to 400 micrograms, making it feasible for quantification of the analytes in this study; however 

these yields may be a challenge when lower abundance analytes are targeted and enrichment is required. 

Tissue microheterogeneity can be addressed by strict quality control of the input material (e.g. tumor 

cellularity), as has proven to be feasible in the application of gene expression profiles for breast cancer 

prognosis46. 

 Together, the results of this study demonstrate the feasibility and usefulness of an international effort to 

develop, analytically validate, and distribute MRM-based assays to large suites of human proteins and 

demonstrates what could be done if various countries were willing to co-fund a scaled human protein 

quantification project18, 19. One approach to realizing this potential is to develop analytically robust assays to 

groups of proteins based on biological pathways, cellular localization, or other logical groupings in an 

internationally-coordinated fashion. Assay panels targeting whole pathways might be constructed for 

quantitative interrogation of biology. 

 This study targeted proteins accessible for MRM-based quantification using a very simple sample 

preparation protocol for generating cellular protein lysate, without biochemical fractionation or enrichment of 

the target analytes prior to MRM analysis. Assuming the success rate found in this study extends to the full 

range of human proteins whose endogenous levels are detectable by MRM from neat cellular lysates (i.e. 

without enrichment or fractionation), it is reasonable to estimate that several thousand human proteins might 

be quantified from cell line lysates by MRM alone (i.e. without enrichment). Note that this number is highly 

context-dependent. For example, although thousands of proteins may be quantifiable in cell lysates without 

enrichment, in a more challenging matrix (e.g. blood plasma) that number is in the hundreds. In all 

biospecimen types, the MRM assay success rate for quantifying endogenous levels of analyte is higher for 
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more abundant proteins than for less abundant proteins. Thus, to achieve the vision of configuring MRM 

assays capable of detecting endogenous levels for the entire human proteome, enrichment strategies will be 

required for many proteins. For example, major classes of post-translational modifications (e.g. 

phosphorylation, etc.) are largely not accessible by MRM without enrichment. In the case of modifications, 

quantification using MRM may face limitations due to enrichment technologies (e.g. occasional difficulty 

enriching a specific modification or in generating an antibody to a specific modification) or peptide 

characteristics (modifications of interest must reside within proteotypic peptides with suitable size, 

chromatographic qualities, ionization properties, etc.) for analysis by mass spectrometry. 

 Analyte enrichment upstream of MRM can reduce sample complexity (103 – 104 enrichment), offering 

advantages of improved sensitivity, increased selectivity, and potential for increased throughput (via shorter 

LC-MRM-MS run times). Enrichment can be achieved either biochemically47-49 (e.g. using chromatography) or 

through the use of analyte-specific antibodies for immuno-affinity enrichment50-54 (producing an immuno-MRM 

assay). Biochemical enrichments are generally costly and/or labor-intensive procedures that critically limit 

throughput and require specialized expertise (i.e. are not readily distributable to the general biology 

community). Immuno-affinity enrichment involves a single-step capture (immunoprecipitation) that is easily 

implemented in any modern research laboratory using existing expertise and infrastructure (and thus is highly 

distributable); the major limitations of this approach are a current lack of validated affinity reagents and the up-

front cost and time required to generate renewable affinity reagents. Aside from costs, the production of high-

affinity anti-peptide antibodies is associated with a 55% per peptide success and a >95% success rate on a 

protein level (when a multiplex immunization strategy is used53). 
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FIGURE LEGENDS 

 

Figure 1. Overview of cell line sample preparation, distribution, and MRM analysis. Thirty cell lines 

related to breast cancer were prepared in complete process triplicate for analysis by quantitative LC-MRM-MS. 

For each cell line, 3 aliquots of each of 2 cell lysate protein concentrations (1.0 ug/uL and 0.1 ug/uL) were 

digested by trypsin. A mixture of stable isotope-labeled standards was added prior to desalting the digested 

peptides. Aliquots were distributed to each performance site where two multiplexed assay groups (one inter-

laboratory assay and one site-specific assay) were analyzed on a standardized analytical platform, as 

described in the Experimental Procedures. The inter-laboratory assay group successfully quantified the 

endogenous levels of 150 peptides (representing 79 proteins), whereas the site-specific assay groups 

successfully quantified the endogenous levels of between 147-160 peptides (representing 78-83 proteins; 240 

overall) (Supplementary Table 2). 

 

Figure 2. Analysis of cell lysates shows excellent precision of MRM-based measurements in a 

biological setting, and inter-laboratory assays show high correlation and agreement between sites. CV 

values for the multiplexed assays measured in complete process triplicates, consisting of (a) inter-laboratory 

targets (150 peptides, 79 proteins) and (b) site-specific target groups. At the three sites, the median assay CVs 

for the inter-laboratory assay group were 5.0%, 7.4% and 5.1%, with 95% of the results having CVs within 

15%, 25% and 17%. The site-specific assay groups had median assay CVs of 4.7%, 6.5% and 4.7%, with 95% 

of the results having CVs within 14%, 22% and 17%.  (c) Results for individual peptide measurements were 

correlated by plotting the peptide amounts measured at the Fred Hutchinson Cancer Research Center, Broad 

Institute, and Seoul National University/ Korea Institute of Science and Technology. For each plot, the x-axis 

shows the log10 amount of peptide measured at site 1 and the y-axis shows the log10 amount of peptide 

measured at site 2. (d) A distribution of the percent difference for a pairwise comparison of results. Box plots 

show the median value plotted as a line with each box displaying the distribution of the inner quartiles and 

vertical lines show 95% of the data. 

 

Figure 3. Heat maps for the protein expressions (left column) and RNA expressions (right column) of 

genes significantly associated with HER2 (a), ER (b) and basal/luminal (c)33. In each heat map, one row 

represents a sample and one column represents a gene. The color bar on the left side of each heat map 

illustrates the subtypes of cell lines. The color bar on the top of each heat map illustrates whether only the 

protein expression, or only the RNA expression, or both expressions of the gene were associated with the 

subtype. For the 4 genes shown in (a), all have significantly different RNA expression levels between HER2+ 

and HER2- cell lines; while only 2 out of the 4 have significantly different protein expression levels. For the 69 

genes shown in (b), 25 or 62 have significantly different RNA or protein expression levels between ER+ and 
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ER- cell lines respectively, with an overlap of 18 genes. For the 98 genes shown in (c), 42 or 87 have 

significantly different RNA or protein expression levels between ER+ and ER- cell lines, with an overlap of 31. 

Figure 4. Distribution of protein expression levels (top panel), RNA expression levels (middle panel), 

and DNA copy numbers (bottom panel) of the twelve subtype-enriched genes showing high 

concordance amongst genomic and proteomic datasets. Two genes, ERBB2 and GRB7 at chr17, are 

Her2 amplicon genes that show good separation of Her2+/Her2- groups. The other ten genes show a 

difference between the basal/luminal subtypes; the corresponding p-values from Wilcoxon rank test are all ≤ 

1e-4 with 10k iterations. Box plots show the median value plotted as a line with each box displaying the 

distribution of the inner quartiles and whiskers show 95% of the data. 

 

Figure 5. Kaplan-Meier (KM) survival curves of breast cancer patients stratified by their expression 

levels of DPYSL2, CLTC or ABAT. Two independent breast cancer datasets41, 42 providing both outcome 

information as well as genomic profiles were used to determine whether the expression of candidate genes 

identified in this study show association with outcome. The data are shown for DPYSL2, CLTC and ABAT. For 

each gene, the breast cancers were classified into high- or low-expressing groups, based on whether or not 

the expression of the candidate gene was greater than the median expression of the candidate gene. The p-

values from Logrank tests comparing the two KM curves are shown above each figure. 
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Figure 4. 
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Figure 5. 
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