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BACKGROUND: Noninvasive prenatal diagnosis of mono-
genic disorders using maternal plasma and targeted mas-
sively parallel sequencing is being investigated actively.
We previously demonstrated that comprehensive genetic
diagnosis of a Duchenne muscular dystrophy (DMD)
patient is feasible using a single targeted sequencing plat-
form. Here we demonstrate the applicability of this ap-
proach to carrier detection and noninvasive prenatal
diagnosis.

METHODS: Custom solution-based target enrichment
was designed to cover the entire dystrophin (DMD) gene
region. Targeted massively parallel sequencing was per-
formed using genomic DNA from 4 mother and proband
pairs to test whether carrier status could be detected reli-
ably. Maternal plasma DNA at varying gestational weeks
was collected from the same families and sequenced using
the same targeted platform to predict the inheritance of
the DMD mutation by their fetus. Overrepresentation of
an inherited allele was determined by comparing the al-
lele fraction of 2 phased haplotypes after examining and
correcting for the recombination event.

RESULTS: The carrier status of deletion/duplication and
point mutations was detected reliably through using a
single targeted massively parallel sequencing platform.
Whether the fetus had inherited the DMD mutation was
predicted correctly in all 4 families as early as 6 weeks and
5 days of gestation. In one of these, detection of the

recombination event and reconstruction of the phased
haplotype produced a correct diagnosis.

CONCLUSIONS: Noninvasive prenatal diagnosis of DMD
is feasible using a single targeted massively parallel se-
quencing platform with tiling design.
© 2015 American Association for Clinical Chemistry

Discovery of the presence of cell-free fetal DNA
(cffDNA)10 in maternal plasma offers a powerful tool for
the development of noninvasive prenatal genetic diagno-
sis (1 ). The application to prenatal diagnosis has been
accelerated by the introduction of massively parallel se-
quencing technology (2, 3 ). Prenatal tests capable of de-
tecting aneuploidies using cffDNA have been commer-
cialized and are highly sensitive and accurate (4 ). Several
studies have confirmed the accuracy of whole-genome
sequencing and sequencing after target enrichment of
cffDNA by demonstrating the relatively even distribu-
tion of fetal and maternal DNA across the entire genome
(5–7 ). This result provides the basis for extending the
applications to monogenic disorders, which comprise a
larger proportion of genetic diseases than chromosomal
aneuploidies.

However, unlike the rapid incorporation of aneu-
ploidy detection into clinical practice, the application to
monogenic disorders is far more complex and has many
obstacles to overcome. Technically, the low and variable
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fraction of cffDNA in maternal plasma limits the reliable
detection of fetal variants at the single-nucleotide level.
Moreover, complex ethical and socioeconomic issues
limit the implementation of noninvasive genome-wide
screening in the prenatal diagnosis of monogenic disor-
ders in pregnant women without a known increased risk.
Therefore, for clinical applications, the ideal platform
needs to be a targeted design that can ensure deep cover-
age and be equally applicable to the proband and carrier,
and for prenatal diagnosis.

We have developed a method that allows the com-
prehensive genetic diagnosis of a Duchenne muscular
dystrophy (DMD) patient. We have shown that this
method is feasible when used with a targeted massively
parallel sequencing platform (8 ). Targeting the entire
exonic and intronic regions produced nearly continuous
uniform coverage across the dystrophin (DMD)11 gene,
enabling identification of both large deletions/duplica-
tions and point mutations. Because this method is sensi-
tive enough to detect a dosage imbalance, the mother’s
carrier status could be easily identified with the same
approach. In addition, because approximately 1000 het-
erozygote sites can be used to analyze maternal X alleles at
2 phases, this method may be also applicable to prenatal
diagnosis using cffDNA by detecting haplotype imbal-
ances between 2 phased haplotypes in the DMD gene.
This haplotype-based imbalance analysis via either
whole-genome sequencing or targeted sequencing of ma-
ternal plasma DNA has been substantiated in models of
several diseases, including �-thalassemia, congenital ad-
renal hyperplasia, and congenital deafness (5, 9–11).
Specifically, New et al. adopted a similar approach using
targeted sequencing and a tiling design for the noninva-
sive prenatal diagnosis of congenital adrenal hyperplasia
inherited with an autosomal recessive pattern (11 ).

In the present study, we attempted to demonstrate
the feasibility of using the targeted massively parallel se-
quencing platform for carrier detection and noninvasive
prenatal diagnosis of DMD.

Materials and Methods

PATIENTS

The 4 DMD families receiving a prenatal diagnosis were
prospectively recruited. Each family cohort consisted of a
proband and the carrier mother. DMD mutations in the
families included both large deletion/duplication and
point mutations (Table 1). The experiment was designed
and performed in 2 parts. First, genomic DNA from 4
mother and DMD proband pairs was sequenced to test
whether an inherited DMD mutation from the carrier
mother could be detected confidently. Second, maternal
plasma DNA from the 4 carrier mothers at varying weeks
of gestation was sequenced to determine whether inher-
itance of a DMD mutation from a carrier mother could
be predicted in her fetus. Fetal genomic DNA obtained
from either chorionic villi sampling or amniocentesis was
used to validate the results of the maternal plasma DNA
sequencing. All procedures were performed as routine
prenatal diagnosis. Additional informed consent was ob-
tained for the study that used maternal plasma DNA and
fetal DNA. The institutional review board (IRB) ap-
proved the study protocol (IRB no. 1302-055-464).

TARGET ENRICHMENT AND MASSIVELY PARALLEL

SEQUENCING

Maternal plasma (8–10 mL) was obtained as described
previously (12 ). To construct the DNA library, we used
the SureSelectXT reagent kit (Agilent Technologies) and
0.5–1 �g of plasma DNA for each case. Because the
library-preparation section in the SureSelect protocol was
designed primarily for genomic DNA, we modified it by
diluting all reagents in the kit to prepare the plasma DNA
library. This protocol was better suited for small amounts

11 Human genes: DMD, dystrophin; ZFX, zinc finger protein, X-linked; ZFY, zinc finger
protein, Y-linked; F8, coagulation factor VIII, procoagulant component.

Table 1. DMD mutation status of the study cohort and types of samples sequenced.

Study
number

DMD mutation (by MLPAa or
Sanger sequencing)

Genomic DNA
sequencing

Maternal plasma DNA sequencing
(gestational age)

Fetal DNA
sequencingProbandb Mother Proband Mother

DMD-01 Exon 49–52 deletion Carrier + + + (6 weeks 5 days, 17 weeks 1 day) +

DMD-02 Exon 2 duplication Carrier + + + (9 weeks 3 days, 12 weeks 1 day) +

DMD-03 Exon 3–7 deletion Carrier + + + (8 weeks 5 days, 11 weeks 3 days) +

DMD-04 c.649 + 2T>C Carrier + + + (7 weeks 1 day) +

a MLPA, multiple ligation-dependent probe amplification.
b All probands were male.
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of input DNA. The adapter-ligated DNA was purified
directly with the spin columns provided in the QIAquick
PCR purification kit (Qiagen) without further size selec-
tion. Four-cycle PCR and SureSelect primers were then
used to amplify the adapter-ligated DNA.

We quantified the DNA libraries using a Qubit 2.0
fluorometer (Invitrogen), and we used the DNA 1000 kit
with a 2100 bioanalyzer (Agilent) to check the size dis-
tribution of the libraries. We generated 0.3–0.5 �g of an
amplified plasma DNA library for each sample, with an
approximate mean size of 270 base pairs. Targeted se-
quence enrichment was performed using the SureSelect
custom kit (Agilent). The custom capture probes targeted
entire transcribed DMD, zinc finger protein, X-linked
(ZFX), and zinc finger protein, Y-linked (ZFY) regions
according to 4 gene databases (RefSeq, Ensembl, CCDS,
and GENCODE) and were designed using Agilent
SureDesign (https://earray.chem.agilent.com/suredesign).
The following parameters were used for the capture de-
sign sequences: density, 2; masking, least stringent; and
boosting, balanced. We incubated 300 ng of the ampli-
fied plasma DNA library with the capture probes for
24 h at 65 °C, in accordance with the manufacturer’s
instructions. After hybridization, we selected the cap-
tured targets by pulling down the biotinylated probe–
target hybrids with streptavidin-coated magnetic beads
(Dynabeads M-280 Streptavidin; Invitrogen) and puri-
fied the targets using a MinElute PCR purification kit
(Qiagen). Finally, we enriched the targeted DNA librar-
ies using 12-cycle PCR amplification with SureSelect
PCR primers (Agilent). The PCR products were purified
using the QIAquick PCR Purification Kit. The library
was paired-end sequenced on the Illumina HiSeq 2000
sequencing system. The sequenced paired-end reads were
submitted to the EBI European Nucleotide Archive
(ENA) database with accession number PRJEB7629
(direct access: http://www.ebi.ac.uk/ena/data/view/
PRJEB7629).

VARIANT CALLING

Paired-end sequencing reads were aligned to the human
genome (Genome Reference Consortium Human Refer-
ence 37) with Bowtie2 aligner (v.2.2.3) (13 ). Picard
Tools (http://picard.sourceforge.net) was used to remove
PCR-duplicated reads, and duplicate-free BAM files
were indexed by using SAMtools (v.0.1.19) (14 ). Local
realignment around small insertions and deletions (in-
dels) and base quality score recalibration were achieved
using the Genome Analysis Toolkit (GATK, v.3.2–2).
Variant calling was performed using GATK Haplotype-
Caller. We filtered out low-quality variant calls using
GATK VariantFiltration with parameters described by
GATK Best Practice (http://www.broadinstitute.org/
gatk/guide/best-practices) (15 ). Using our in-house
script, we also filtered out variants with a genotype qual-

ity �30 and read depth �200. Lastly, we used ANNO-
VAR to annotate the unfiltered variants against the Ref-
Seq gene set (16 ).

STRUCTURAL VARIATION DETECTION

Pindel (0.2.4.w) was used to detect structural variations
(17 ). Only structural variations with a supportive read
count �50 and minimum length �1000 on the DMD
gene were selected as pathogenic candidates. Compared
with coverage plots visualized by the UCSC genome
browser, large deletions/duplications were confirmed (18).

HAPLOTYPE CONSTRUCTION

Because of hemizygosity in males, we directly phased the
maternal haplotypes of the DMD region. Using heterozy-
gous single-nucleotide variants (SNVs) in the genomic
DNA sequencing from the carrier mothers and probands,
we classified the inherited haplotype that contained a
deleterious mutation as haplotype A (HapA) and the
other haplotype without a mutation as haplotype B
(HapB).

MEASUREMENT OF FRACTIONAL FETAL DNA

CONCENTRATION

In addition to the DMD gene, capturing the ZFX and
ZFY genes provided a measurement of the fractional fetal
DNA concentration. Using mean read depth of 2 zinc
finger genes (ZFX and ZFY ) with a minimum mapping
quality score of 20 and base quality score of 20, we cal-
culated the fractional fetal DNA concentration as:

Fractional fetal DNA concentration

�
2 � ZFY

ZFX � ZFY
� 100%.

FETAL GENOTYPE PREDICTION

The DMD gene is known to have a high recombination
rate, and tests to detect the recombination event and
recombination point were performed before fetal geno-
type prediction. To prevent the occurrence of a predic-
tion error for the recombination point because of outlier
values originating from duplicated or repetitive regions,
we used the R package ‘qcc’ for outlier removal (19 ).
After outlier detection, we predicted the change point in
the read fraction values using the R package ‘bcp’ (Bayes-
ian change point) (20 ). After detection of the recombi-
nation event, we reconstructed haplotypes with and
without deleterious DMD mutations and designated
these as HapA* and HapB*, respectively. Subsequently,
we predicted the fetal genotype by identifying the allele
fraction imbalance between 2 haplotypes obtained from
maternal plasma sequencing. Because the inherited allele
would be overrepresented in relation to the fetal DNA
fraction in the maternal plasma, the fetal genotype was
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determined by estimating which haplotype was overrep-
resented. If the overrepresented haplotype was the one
harboring the DMD mutation, the fetus could be pre-
dicted to have inherited the DMD mutation (Fig. 1).

The statistical significance of the allele fraction im-
balance was estimated using a 1-tailed Student’s paired
t-test or Wilcoxon signed-rank test depending on the
assumption of normality. All statistical tests were per-
formed with outlier-removed datasets.

Results

CARRIER DETECTION FROM GENOMIC DNA SEQUENCING OF

MOTHER AND PROBAND PAIRS

Targeted deep sequencing of 4 mother and proband pairs
revealed uniform coverage across the DMD gene. A sum-
mary of the basic sequencing of the 4 pairs is provided
(see Table 1 in the Data Supplement that accompa-
nies the online version of this report at http://www.

Genotype of mother

Genomic DNA of DMD pair Maternal plasma DNA

Targeted massively parallel sequencing

Read fraction calculation

Genotype of proband

Normal

Normal fetusAffected fetus

Carrier

Haplotype construction

Targeted massively parallel sequencing

Recombination event estimation

Presence of recombination event Absence of recombination event

 Haplotype reconstruction

HapA 
overrepresentation

HapB 
overrepresentation

Normal fetusAffected fetus

HapA*
overrepresentation

HapB* 
overrepresentation

Fig. 1. Work flow of a comprehensive genetic diagnosis in a DMD carrier, proband, and fetus.
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clinchem.org/content/vol61/issue6). Large deletions/
duplications were identified on visual inspection from a
coverage plot across the DMD gene in both probands and
carrier mothers (see online Supplemental Fig. 1). The
breakpoints were estimated successfully using the struc-
tural variation detection software Pindel (see online Sup-
plemental Table 2). With the use of visual inspection and
breakpoint estimation, the predicted deleted or dupli-
cated exons in all pairs were identical to the previous
results detected using the multiple ligation-dependent
probe amplification method. In agreement with the pre-
vious result, probands with a deletion mutation had
nearly zero read depth at the deletion site, whereas the
carriers with a deletion mutation had about half the read
depth compared with the baseline read depth outside the
deleted region (DMD-01 and DMD-03). The read
depth height of the carrier with a duplication mutation
was positioned between that of the baseline and proband
with a duplication mutation (DMD-02). An inherited
splice site mutation was also identified in the DMD-04-
proband and the carrier mother (see online Supplemental
Fig. 2). The number of heterozygous or hemizygous
SNVs in carriers and probands ranged from 700 to 1200
(see online Supplemental Table 3). We successfully con-
structed 2 maternal haplotypes in the DMD gene using
heterozygous SNVs and their proband haplotype. The
mean read depth ratio of ZFY to ZFX ranged from 0.95
to 0.98 in male probands and was 0 in female carriers,
indicating that these zinc finger genes could be used as a
reliable indicator of the fractional cffDNA concentration
in the subsequent study using maternal plasma (see on-
line Supplemental Table 4).

FETAL GENOTYPE PREDICTION BY MATERNAL PLASMA DNA

SEQUENCING

Seven plasma DNA samples obtained from 4 pregnant
carriers at different gestational weeks were sequenced.
The sequencing results showed uniform and high cover-
age across the DMD gene (see online Supplemental Fig. 3
and online Supplemental Table 1). The number of SNVs
and indels were also compatible with the genomic DNA
sequencing data (see online Supplemental Table 3). Frac-
tional cffDNA concentration estimated by calculating
the mean read depth of ZFX and ZFY ranged from 5.8%
to 9.7% (see online Supplemental Table 4). Higher du-
plicated read rates (18%–28%) were noted in 7 plasma
samples used for DNA sequencing (see online Supple-
mental Table 5). This difference may have originated
from additional PCR cycles used during library prepara-
tion and target enrichment because of the low concentra-
tion of the input plasma DNA.

Before examining the haplotype imbalance between
the 2 phased maternal haplotypes, we investigated the
recombination event within the DMD region using the R
package, as described in Materials and Methods. The bcp

algorithm estimated a significant change point in the read
fraction in the sequencing data from DMD-02 at 9 weeks
(DMD-02-9-wk) and DMD-02-12-wk, which was also
evident from a scatterplot of the read fraction distribu-
tion of the phased haplotype (Fig. 2). Subsequent analysis
suggested the recombination point between chromo-
somal X positions 32321115 and 32346373 based on
the bcp algorithm. The haplotypes of DMD-02-9-wk
and DMD-02-12-wk sequencing data were recon-
structed using the recombination point information. Be-
cause all the other plasma sequencing data revealed 1
large segment of 2 haplotypes, all remaining families,
with the exception of DMD-02, used the same haplotype
that was phased from the proband sequencing data (see
online Supplemental Fig. 4, A–C). We next attempted to
predict the fetal genotype by comparing the allele frac-
tion between the 2 haplotypes in the maternal plasma. In
both DMD-01-6-wk and DMD-01-17-wk, the allele
fraction of HapB was significantly higher, indicating in-
heritance of the nonmutated haplotype by the fetus (Fig.
3A). All remaining samples supported the inheritance of
a mutated haplotype by the fetuses, including DMD-02-
9-wk and DMD-02-12-wk, the haplotypes of which
were reconstructed based on a recombination event pre-
diction (Fig. 3, B–D). All the allele fraction differences
and statistical test results are provided (see online Supple-
mental Table 6). The fetal genotypes predicted from the
4 DMD families matched exactly the fetal genomic DNA
sequencing data (see online Supplemental Fig. 5 and on-
line Supplemental Table 2).

Discussion

In the present study, we demonstrated that targeted deep
sequencing makes feasible not only genetic diagnosis of a
DMD patient but also carrier detection and noninvasive
prenatal diagnosis. Considering that the prenatal diagno-
sis of monogenic disorders is still performed in a family-
based setting in which a genetically confirmed proband
or carrier has been identified, this method has a practical
advantage that proband diagnosis, carrier detection, and
noninvasive prenatal diagnosis can be accomplished effi-
ciently with a single platform.

For clinical implementation of noninvasive prenatal
diagnosis of X-linked recessive disorders including
DMD, refining the detection method of dosage imbal-
ance caused by presence of a small fraction of cffDNA is
a critical step in identifying the maternally derived geno-
type. Tsui et al. used digital PCR to detect the slight
overrepresentation of a coagulation factor VIII, proco-
agulant component (F8) mutation in pregnant women
who are carriers of hemophilia mutations (12 ). The rel-
ative mutation dosage analysis based on a sequential
probability ratio test was used. Although it is simple and
does not require haplotype information, the detecting
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probe must be individualized according to the specific
mutation type. Further, multiple tests of each sample
should be conducted to obtain sufficient statistical
power, especially when the fetal DNA fraction is low, as
in the early gestational weeks. Relative haplotype dosage
analysis may be an alternative option for identifying
the slight overrepresentation of an inherited maternal
mutation or allele because the genome-wide or targeted
massively parallel sequencing approach can produce
many informative SNVs for haplotyping. Lam et al. used
this approach to identify the maternal inheritance of a
mutation in a �-thalassemia model (9 ). Although
�-thalassemia is a disease with autosomal recessive
inheritance, a method that identifies the maternal inher-
itance pattern would be equally applicable to X-linked
recessive diseases. Instead of using the separate haplotyp-

ing method employed by Lam et al., New et al. sequenced
a parent and patient trio, and then used the resulting
haplotype information for maternal DNA analysis in the
targeted platform used in the trio analysis (11 ). This
diagnostic flow could be incorporated more easily into
the current genetic diagnosis and counseling process.

Several gene-specific factors inherent to DMD
should be considered for clinical implementation of non-
invasive prenatal diagnosis. First, large deletion/duplica-
tion mutations constitute about two-thirds of the DMD
mutation spectrum. Because a dosage imbalance already
exists in DMD carriers with a large deletion/duplication
mutation, it would be difficult to perform relative muta-
tion dosage analysis using digital PCR. Thus, measuring
the haplotype imbalance of the DMD region outside the
mutation would be plausible. Second, the recombination
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Fig. 2. Detection of a recombination event and haplotype reconstruction in the DMD-02 family.
Read fraction distribution of 2 haplotypes. Each haplotype was divided into 2 large segments. The black dotted lines indicate the recombina-
tion point predicted by the bcp algorithm. The karyogram representing chromosome X was generated by ggbio [Yin et al. (24 )].
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rate of DMD is about 4 times higher than the recombi-
nation rate with chromosome X and with the whole ge-
nome: 4.73 centimorgans (cM)/Mb, 1.21 cM/Mb, and
1.26 cM/Mb, respectively (21, 22 ). If a recombination
event occurred within the DMD region, it would greatly
affect the dosage imbalance analysis and could result in
an incorrect prediction. Fetal genotype prediction with-
out considering the inheritance of recombinant haplo-
types would cause nonsignificant haplotype imbalance or
contradictory result; it is possible to misdiagnose a non-
DMD fetus as harboring a DMD mutation and vice versa
(see online Supplemental Fig. 6 and online Supplemental
Table 7). Thus, targeting the whole DMD region with a
tiling design is preferable to ensure the reliable detection
of a recombination event within the DMD region. Third,
because the DMD region is hemizygous for male pro-
bands, all phased heterozygous SNVs are informative for
dosage imbalance analysis provided that the recombina-
tion event is checked and corrected for before analysis.

Considering the abovementioned gene-specific fac-
tors, we postulate that our approach targeting the whole

DMD region with tiling design provide the best approach
for noninvasive prenatal diagnosis of DMD. Instead of
using multiple haplotype blocks for repeated relative hap-
lotype dosage analysis (5, 11 ), we hypothesized that the
whole DMD gene could be analyzed as 1 large haplotype
block, and we compared directly the allele fractions of 2
phased maternal heterozygous alleles. Although the study
reported by New et al., in which multiple haplotype
blocks were used, demonstrated the clinical applicability
of that design to an array of autosomal recessive disorders
(11 ), we believe that the current approach using 1 large
haplotype block is a simpler and more straightforward
method, at least for DMD. Although the fetal genotypes
from all 4 DMD families were accurately predicted, the
application of the current approach to routine molecular
testing may have several limitations, in particular regard-
ing noninvasive prenatal diagnosis. First, the current
proband-based phasing approach may lead to misdiagno-
sis if separate recombination occurs both in a proband
and in a new fetus. In addition, it was basically impossible
to discern whether the recombination event observed in
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Fig. 3. Fetal genotype prediction.
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resented in the remaining maternal plasma samples. (B), DMD-02 (allele fraction differences: 4.4% and 2.9%). (C), DMD-03 (allele fraction
differences: 5.6% and 4.9%). (D), DMD-04 (allele fraction difference: 2.9%).
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the DMD-02 family had occurred in the proband or in
the new fetus using the current proband-based phasing
approach, although the inherited fetal genotype could
still be correctly predicted. This disadvantage could be
partly overcome by adding the grandfather to maternal
haplotype phasing, as the maternal X haplotype inherited
from the grandfather would theoretically be free of re-
combination. This approach of using the grandparents
for phasing was introduced in a recent article by Meng et
al. (10 ). Second, as female patients or carriers of DMD
mutations with no known proband have been increas-
ingly identified, the current proband-based phasing ap-
proach also has a practical limitation in that setting. An
alternative method that uses other family members for
maternal haplotype phasing could be introduced to over-
come this limitation, although it may still not be appli-
cable to all at-risk couples without a proband. A grand-
father or normal male child may be used for phasing via
the same approach. Moreover, a carrier female or normal
female child may also be used for phasing when the pa-
ternal genotype is available. Third, the optimal timing of
testing and the least fetal DNA fraction required should
be determined and validated in extended DMD families
with various DMD mutations. In the current study, the
earliest gestational time and the lowest fetal fraction that
allowed successful noninvasive prenatal diagnosis were 6
weeks and 5 days and 5.8%, respectively. New et al. re-
ported a successful case of prenatal diagnosis at 5 weeks
and 6 days of gestation with a fetal fraction of 1.4% (11 ).
We believe that our results are compatible with those of
the study performed by New et al. in terms of resolution,
considering that 5–6 weeks of gestation might be the
earliest period at which prenatal tests may be offered.
However, data collection in extended families is needed,
as the current study used only 4 families compared with
the 14 families reported by New et al. Fourth, because the
informative SNVs that are required for dosage imbalance
analysis of maternally inherited alleles might be limited in
number and located at greater distance, the current ap-
proach using 1 large haplotype block may be biased by
false-recombination prediction. Thus, the extension of
the applicability of the current approach to autosomal
recessive disorders should be demonstrated separately.

Besides the technical considerations, there are com-
plex ethical and socioeconomic issues to be addressed
before such an approach can be implemented in the
clinic. Currently, no curative therapy is available for
DMD, although some therapeutic molecules are under
clinical trial (23 ). However, considering the current
method is best fitted to clinical circumstances in which
the presence of an affected proband is the reason for
prenatal testing, noninvasive determination of fetal geno-
type in the early gestational weeks could provide an
autonomy-based reproductive option to the parents.

Despite the need to overcome these various hurdles,
our approach for the comprehensive genetic diagnosis of
the proband and noninvasive prenatal diagnosis using a
single massively parallel targeted sequencing platform
may provide a practical model for implementation
of next-generation sequencing technology to clinical
genetics.
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