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Abstract

Background

Attention-deficit/hyperactivity disorder (ADHD) is currently diagnosed by a diagnostic inter-

view, mainly based on subjective reports from parents or teachers. It is necessary to

develop methods that rely on objectively measureable neurobiological data to assess brain-

behavior relationship in patients with ADHD. We investigated the application of a topological

data analysis tool,Mapper, to analyze the brain functional connectivity data from ADHD

patients.

Methods

To quantify the disease severity using the neuroimaging data, the decomposition of individ-

ual functional networks into normal and disease components by the healthy state model

(HSM) was performed, and the magnitude of the disease component (MDC) was computed.

Topological data analysis usingMapper was performed to distinguish children with ADHD

(n = 196) from typically developing controls (TDC) (n = 214).

Results

In the topological data analysis, the partial clustering results of patients with ADHD and nor-

mal subjects were shown in a chain-like graph. In the correlation analysis, the MDC showed

a significant increase with lower intelligence scores in TDC. We also found that the rates of

comorbidity in ADHD significantly increased when the deviation of the functional connectiv-

ity from HSM was large. In addition, a significant correlation between ADHD symptom

severity and MDC was found in part of the dataset.
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Conclusions

The application of HSM and topological data analysis methods in assessing the brain func-

tional connectivity seem to be promising tools to quantify ADHD symptom severity and to

reveal the hidden relationship between clinical phenotypic variables and brain connectivity.

Introduction
Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental
disorder of childhood, affecting at least 5% of school-age children worldwide [1]. Children
with ADHD usually experience symptoms of inattention, impulsivity, and hyperactivity.
ADHD is also associated with impairments in academic, social, and family functioning and is
commonly accompanied by a range of comorbid psychiatric disorders [2].

Owing to the limited understanding of the biological underpinnings of mental disorders,
ADHD is currently diagnosed using the criteria from the Diagnostic and Statistical Manual of
Mental Disorders (DSM) [3] rather than by objective neurobiological evidence [4–7]. In fact,
symptoms are usually reported by parents or teachers based on their inherently subjective
observations. Moreover, diagnosing ADHD can be challenging because the line between nor-
mal behaviors typically observed in children and ADHD symptoms is somewhat arbitrary [8].
Diagnosis of ADHD is further complicated by the presence of comorbid conditions, including
learning disabilities, oppositional defiant disorder (ODD), anxiety disorders, and mood disor-
ders [8]. As a result, the rates of ADHD reported in epidemiological studies are often variable
and sometimes overestimated [8], and misdiagnoses are reported as ranging approximately
from 10% to 30% [9]. Therefore, it would be highly desirable to develop objective methods that
rely on objectively measurable data.

With this background, the interest in neurobiological markers of ADHD has grown sub-
stantially in recent years [10–14]. In particular, the feasibility of predicting disease states using
data from structural and functional magnetic resonance imaging (MRI) has attracted increas-
ing attention in the field and has shed light on the development of imaging-based diagnostic
tools to complement the clinicians’ diagnosis [15–24]. For example, the recent competition
announced by the ADHD-200 Consortium aimed to develop various types of supervised or
modified versions of classical learning algorithms to distinguish ADHD from typically develop-
ing children (TDC) using resting state functional imaging datasets from large samples [6,25–
27]. However, the average prediction accuracy was 49.8% (range 37.4–60.5%), and the team
that generated the highest score only used phenotypic data of age, sex, IQ, and handedness,
without even using imaging data [6]. Therefore, the question of whether imaging-based fea-
tures are better predictors of ADHD than demographic features became a debated issue in the
imaging community [6,27]. So far, imaging data do not seem to provide diagnostic benefits
and potential MRI-based biomarkers, which are useful for a direct diagnostic decision and a
measure of disease severity, are rarely attained [4,28,29].

To overcome this limitation, new methods for assessing disease characteristics from the
neuroimaging data need to be developed and the phenotypic associations in high-dimensional
brain connectivity data need to be identified. For this purpose, we are investigating the applica-
tion of mathematical models to the analysis of brain functional connectivity data. The recently
developed topological data analysis tool, calledMapper, is widely used in analyzing high
dimensional behavioral [30], clinical [31,32], and biological [33] datasets.Mapper is a mathe-
matical framework and was developed in the area of applied topology to identify shape
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characteristics of datasets based on the distance between data points along a pre-assigned filter
function [34]. Usually, filter functions for the disease-specific data analysis are provided by the
healthy state model (HSM), which was first introduced in microarray data analysis [32]. The
HSM essentially unravels the data according to the extent of overall deviation from a healthy
(or normal) state, and provides a means to define the guiding filter functions.Mapper, guided
by the filter and distance functions, approximately collapses the data into a simple and low
dimensional shape.Mapper was successfully applied to genomic expression data from diseased
tissue, and classifying breast cancer [31] and diabetes subtypes [34].

In this study, we present the topological analysis tool,Mapper, in combination with HSM
and their application to functional neuroimaging data. We investigated the association between
the disease components analyzed byMapper and HSM with clinical phenotypes such as IQ,
symptom severity and the comorbidity rate of ADHD to test whether brain functional connec-
tivity patterns are related to differences in these phenotypic variables of interest.

Methods and Materials

Datasets
The preprocessed resting state fMRI data was obtained from the ADHD-200 Consortium web-
site (http://fcon_1000.projects.nitrc.org/indi/adhd200). We selected datasets from New York
University (NYU) and Peking University (PU) for our study because these two institutes have
the largest data samples among the ADHD-200 database and these datasets include equal
amount of patients with ADHD and TDC. The NYU dataset includes 98 TDC and 118 children
with ADHD. The PU dataset includes 116 TDC and 78 children with ADHD. Psychiatric diag-
noses, including comorbidity information, were established through psychiatric interviews
with experienced child psychiatrists using the Schedule of Affective Disorders and Schizophre-
nia for Children-Present and Lifetime Version administered to parents and children (NYU and
PU) and the Conners’ Parent Rating Scale-Revised, Long Version (NYU) or the ADHD Rating
Scale IV (PU). Symptom severity such as inattention and hyperactivity/impulsivity and the
ADHD index, which is an overall measure of ADHD symptom severity, were rated by parents.
Intelligence was evaluated with the Wechsler Abbreviated Scale of Intelligence (NYU) or the
Wechsler Intelligence Scale for Chinese Children-Revised (PU). The details for the phenotypic
and clinical variables are described elsewhere [35].

Preprocessing
Briefly, for the construction of the functional network, we used the extracted time courses from
the Athena preprocessed data. A detailed description of the preprocessing steps can be found
in the Supporting Information as well as on the Athena website. The filtered time course files,
ADHD200_AAL_TCs_filtfix.tar.gz, can be downloaded from the ADHD-200 Preprocessed
Data website. The functional network of each subject (Rij) was then computed by Pearson’s
correlation coefficients between the time courses of i-th and j-th regions of interest (ROIs). The
upper triangular part of the functional connectivity matrix for each subject was extracted and
vectorized as following:

Ti ¼ fR12;R13; . . . ;R1n;R23; . . . ;R2n; . . . ;Rn�1;ng; ð1Þ

where i is the subject index, n is the number of ROIs, and the dimension of Ti ism = n(n − 1)/
2. Here, we called the vectorized functional connectivity data as functional connectivity vector
Ti. Finally, the functional network dataset, D = [Dij], can be obtained as illustrated in Fig 1,
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where i represents the subject index, j represents the j-th elements of Ti, and the vector Ti is the
i-th row vector of D = [Dij].

Healthy state model (HSM)
The functional connectivity vector Ti of each subject as described in Eq (1) can be decomposed
into the normal component and the disease component by HSM [32] as follows:

Ti ¼ TNc
i þ TDc

i ; ð2Þ

where the normal component (Nc) of data mimics HSM. The detailed description about HSM
can be found in the SI. Then, the residual of the fit to HSM becomes the disease component as
follows:

TDc
i ¼ Ti � TNc

i : ð3Þ

Finally, the magnitude of the disease component for each subject can be obtained using L2-
norm as follows:

kTDc
i k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
8uv

jRDc
uv j2

r
; ð4Þ

where RDc
uv is a residual of the disease component in the individual functional network. The L2-

norm of the disease component measures the overall amount of deviation from the HSM.

Topological data analysis
In this study, the topological data analysis was used to extract a geometric shape from the rela-
tionships among subjects by using a new technology named “partial clustering”. Initially,Map-
per, a tool for topological data analysis [31,34] was introduced in the neuroimaging society.
The first step for analyzing neuroimaging data usingMapper is to define distance and filter
functions. The use of distance function is to measure dissimilarity between disease components
of the individual functional connectivity vector. Usually, the correlation distance is used as a
distance function:

dðTDc
u ;TDc

v Þ ¼ 1� rðTDc
u ;TDc

v Þ; ð5Þ

where r(X, Y) measures correlation coefficients between two vectors: X and Y.
The essential role of the filter function is to collapse high-dimensional functional network

data to a single data point and to capture a neurobiologically meaningful characteristic of the
data [31]. In the current study, the filter function measured the magnitude of the disease com-
ponent in the functional network data. In general, the value of the filter function becomes
larger when a large number of functional connections deviate by a large extent from the HSM

Fig 1. Schematic procedures of the functional network construction. (A) Functional network matrix,
[Rij], for a subject. (B) Upper triangular matrix of [Rij]. (C) Vectorization of the upper triangular matrix. (D)
Stacking Ti for all subjects to constructD, where the vector Ti is the i-th row vector ofD = [Dij].

doi:10.1371/journal.pone.0137296.g001
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either in a positive or negative direction. The second step for the topological data analysis is to
define the clustering method. We chose the single-linkage method that was widely used in the
topological data analysis. A detailed description of these particular clustering procedures can
be found in the references [33,36]. The last step is to visualize the resulting topology using a
graph (Fig C in S1 File). In the resulting graph, each node is a subset of subjects, and edges
connect similar nodes. The color of each node encodes the value of the filter function averaged
across all the data points to the node, with blue representing a low value and red denoting a
large value.

Statistical analysis
First, group differences in the values of the filter function, which represent the magnitude of
the disease component, were examined by a one-way analysis of variance (ANOVA). Second,
Pearson’s correlation coefficients between the values of the filter function and clinical pheno-
typic variables were evaluated to find the significant relationships between these measures.
Third, for the value of the filter function, we conducted analysis of the receiver operating char-
acteristics including the estimation of sensitivity and specificity. Fourth, the correlation analy-
sis was conducted to reveal a relationship between a psychiatric comorbidity and resulting
topology. For this analysis, we calculated Pearson’s correlation coefficients between the ratios
of the subject with psychiatric comorbidity in each node in the resulting topology and the node
index, where the node index represents the node number with lower (higher) index indicates a
subset of subjects having a lower (higher) value of the filter function.

Results

Demographic variables and clinical measures
Some differences existed in the clinical characteristics between participants from NYU and PU
(Table 1). There was no significant difference in age between the TDC and ADHD group, but
the proportion of males was higher in the ADHD sample compared to the TDC sample. In the
dataset, several subjects did not have scores from clinical measures and were excluded from the
correlation analysis (Table 2). Scores of the ADHD index were significantly lower for PU than
for NYU participants (p< 0.0005, Table A in S1 File), which likely reflect differences between
the ADHD Rating Scale IV (PU) and the Conners’ Parent Rating Scale-Revised, Long Version
(NYU). In addition, we computed the ratio of comorbidity in patients with ADHD for the
NYU and PU datasets. In the NYU dataset, 36% (42 of 118) of patients with ADHD had the
following comorbid psychiatric symptoms: anxiety disorder (15 patients), depressive disorder
(8 patients), learning disorder (LD, 6 patients), ODD (6 patients), and other disorders (7
patients). In the PU dataset, 53% (41 of 78) of patients with ADHD had the following comorbid
psychiatric symptoms: ODD (25 patients), LD (7 patients), tics (6 patients), conduct disorder

Table 1. Demographic variables and ADHD diagnoses.

Data Set TDC ADHD ADHD Diagnosis

Sex Age Sex Age Combined Inattentive Hyperactive

(M/F) Mean (SD) (M/F) Mean (SD)

NYU 47/51 12.2 (3.1) 93/25 11.3 (2.7) 73 43 2

PU 71/45 11.7 (1.7) 73/5 12.4 (2.0) 29 49 0

ADHD, attention-deficit/hyperactivity disorder; F, female; M, male; NYU, New York University Child Study Center; PU, Peking University; SD, standard

deviation; TDC, typically developing children

doi:10.1371/journal.pone.0137296.t001
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(3 patients). Due to this substantial difference in clinical characteristics of each dataset, analyses
were conducted separately for the NYU and PU datasets.

Distribution of disease component
The filter function successfully measured a magnitude of the disease component; the subjects
with smaller values of the filter function, which represented the smaller magnitude of the dis-
ease component, were mostly in the TDC group while the subjects with larger values of the fil-
ter function were mostly patients with ADHD. Fig 2 shows the distributions of the value of
filter function for the two groups, distinguishing ADHD patients from normal subjects. The
values of the filter function are almost the same for with and without scrubbing the time points
that showed large head motions (i.e., the framewise displacement> 1mm) when evaluating the
functional connectivity (r = 0.9940 for the NYU and r = 0.9909 for the PU dataset). A one-way
ANOVA found significant group differences in the values of the filter function (p< 0.0005,
Table 3). We have not found any significant confounding effects of the phenotypic informa-
tion, such as age, gender or medication status, to the group differences in the magnitude of the
disease component (Table C in S1 File). Also, the value of the filter function, which measures
the magnitude of the disease component, has excellent sensitivities and specificities (>96%) for
the diagnosis of the children with ADHD at a cut-off score of 12 (11) for the NYU (PU) dataset
(Table D in S1 File).

Topological data analysis
Topological data analysis usingMapper was applied to the functional neuroimaging data and
the chain-like graph was obtained as a result (Fig 3 and Table B in S1 File for NYU data set).
The blue-colored nodes contained mostly normal subjects, whereas red-colored nodes con-
tained patients with ADHD who generally had large deviation from the functional network of
the healthy subjects. The illustrations of the number of subjects and the occupation ratio of
group members are presented in Fig 3B and 3C.

Table 2. Correlations between values of the filter function and clinical phenotypes (symptom severity and intelligence).

Clinical phenotype TDC group ADHD group

NYU (n = 98) PU (n = 116) NYU (n = 118) PU (n = 78)

Symptom Severity

Missing data, n 2 15 2 7

ADHD Score -0.10 (0.3404) 0.08 (0.4395) 0.03 (0.7897) 0.23 (0.0488)*

Inattentive Score -0.11 (0.3006) 0.12 (0.2346) -0.04 (0.7015) 0.22 (0.0655)

Hyperactivity/Impulsivity -0.05 (0.5956) 0.01 (0.9363) 0.04 (0.6993) 0.20 (0.0986)

Intelligence Scale

Missing data, n 7 1 3 0

Full-Scale IQ -0.34 (0.0009)** -0.19 (0.0458)* -0.06 (0.5513) -0.17 (0.1273)

Performance IQ -0.32 (0.0017)** -0.18 (0.0497)* -0.01 (0.9326) -0.05 (0.6811)

Verbal IQ -0.28 (0.0067)* -0.14 (0.1355) -0.08 (0.3940) -0.20 (0.0780)

Values are Pearson’s correlation coefficients (plus corresponding p-values).

The statistically significant thresholds are labeled as *P < 0.05

**P < 0.005.

doi:10.1371/journal.pone.0137296.t002
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Fig 2. Distribution of the magnitude of the disease component (or the values of the filter function) for each group: the TDC group (gray bars) and
the ADHD group (white bars).

doi:10.1371/journal.pone.0137296.g002

Table 3. Groupmeans and standard deviations of the filter function value for TDC and three ADHD subtype groups.

Data Set TDC ADHD-C ADHD-H ADHD-I F p-value

NYU 9.2 (1.1) 14.4 (1.4) 17.3 (4.7) 14.7 (1.5) 289.4 <0.0005

PU 8.6 (1.1) 13.6 (1.6) 13.5 (1.7) 289.9 <0.0005

ADHD, attention-deficit/hyperactivity disorder; C, combined type; H, hyperactivity/impulsivity type; I, inattentive type; F, female; M, male; NYU, New York

University Child Study Center; PU, Peking University; TDC, typically developing children

Group differences were evaluated using one-way analysis of variance

doi:10.1371/journal.pone.0137296.t003
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Relationships between resulting topology and clinical phenotypic
measures
Since one important goal of topological data analysis is to obtain knowledge about the data fol-
lowed by quantitative analysis, qualitative graphical (Fig 4) and quantitative correlation analy-
ses (Table 2) were performed to find the hidden relationship between theMapper results and
clinical phenotypic variables. We inspected each node and computed the average value in each
node. First, the visualization of the symptom severity as a function of node index revealed that
the blue color nodes, whose index numbers ranged from 1 to 10, had significantly lower symp-
tom severity than those of the red color nodes, whose index numbers ranged from 40 to 49
(Fig 4A). Significant statistical differences in the ADHD index, hyperactivity/impulsivity,
and inattention scores between the blue and red color nodes were confirmed (p< 0.0005).
Especially the symptom severity, represented by the ADHD index score from the PU dataset,
showed positive correlations with the values of the filter function (r = 0.23, p = 0.0488;
Table 2). However, for the NYU sample, the ADHD index did not show significant correla-
tions with the value of the filter function. Second, the visualization of the intelligence scale as
function of node index showed the decreasing trend across blue color nodes, which index num-
ber ranges from 1 to 19, and the constant trend across red color nodes, which index number
ranges from 20 to 49 (Fig 5B). In the TDC group, we revealed that the significant negative cor-
relations between the intelligence scales and the values of the filter function as described in
Table 2. We compared 10 TDC subjects with the highest value of the filter function with the

Fig 3. Resulting graph of the topological data analysis using the NYU dataset. (A) The ADHD-like
subjects are ordered by the magnitude of deviation from the HSM. Each node is colored by the mean of the
filter map on the points. Blue nodes contain normal-like subjects whose total deviations of the functional
network from HSM are small (normal and normal-like subjects). Red nodes contain ADHD-like subjects
whose deviations of the functional connectivity vector from HSM are large. The image of filter function was
subdivided into 10 intervals with 85% overlap. (B) The number of subjects for each group versus node index.
(C) The occupation ratio of group members in each node as function of node index.

doi:10.1371/journal.pone.0137296.g003

Fig 4. Visualization of the clinical phenotype data as a function of the node index in the NYU data. (A)
Average symptom severity in each bin of graph. (B) Average intelligence scores in each bin of graph.

doi:10.1371/journal.pone.0137296.g004
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lowest values regarding demographic factors and ADHD symptom severity. The result shows
that TDC subjects with higher values of the filter function consist of a younger age group
(NYU dataset), contain more females (NYU dataset), have significantly lower IQ (NYU and
PU datasets), and more severe hyperactivity/impulsivity (NYU dataset) compared to those
with lower values of the filter function (Table 4). Finally, the correlation analyses found a

Fig 5. Scatter plots for the value of the filter function versus clinical phenotype variables. In the ADHD
group, correlation coefficients with the ADHD index were evaluated for (A) the NYU dataset and (B) the PU
dataset. In the TDC group, correlation coefficients with full-scale IQ were evaluated for (C) the NYU dataset
and (D) PU dataset.

doi:10.1371/journal.pone.0137296.g005

Table 4. Subgroup comparisons in demographics and clinical variables.

Demographic and
clinical variables

New York University (NYU) dataset Peking University (PU) dataset

TDC1 (low VFF) TDC2 (high VFF) t, chi2 p TDC1 (low VFF) TDC2 (high VFF) t, chi2 p

n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD)

Value of the filter function 10 7.6 (0.5) 10 1.2 (1.2) -9.18 <0.0005 10 7.0 (0.3) 10 11.1 (1.5) -8.08 <0.0005

Demographic Variables

Gender (M/F)† 8/2 3/7 5.10 0.024 10 5/5 10 3/7 0.83 0.361

Age 10 13.8 (2.5) 10 10.7 (2.6) 2.72 0.014 10 11.3 (1.7) 10 11.9 (1.7) -0.78 0.446

Symptom Severity

ADHD Index 9 44.9 (5.6) 10 45.1 (4.6) -0.09 0.929 7 26.1 (5.9) 10 29.0 (6.6) -0.92 0.373

Inattentive 9 44.8 (6.0) 10 45.4 (4.2) -0.27 0.794 7 14.0 (3.8) 10 16.2 (4.6) -1.04 0.314

Hyper/Impulsive 9 43.3 (0.5) 10 47.8 (5.8) -2.28 0.036 7 12.1 (2.9) 10 12.8 (3.4) -0.42 0.684

Intelligence Quotient (IQ)

Full-Scale IQ 10 117.7 (20.7) 10 97.7 (12.5) 2.61 0.018 10 123.0 (9.8) 10 105.2 (15.2) 3.11 0.006

Verbal IQ 10 115.9 (20.0) 10 101.7 (10.5) 1.99 0.062 10 120.4 (8.3) 10 107.2 (16.2) 2.30 0.034

Performance IQ 10 115.0 (18.1) 10 94.2 (13.8) 2.89 0.010 10 120.8 (12.1) 10 101.7 (16.1) 2.99 0.008

IQ, Intelligence quotient; SD, standard deviation; TDC1, 10 TDC subjects with the lowest values of the filter function; TDC2, 10 TDC subjects with the

highest value of the filter function; VFF, value of the filter function.

†chi2 test were performed.

doi:10.1371/journal.pone.0137296.t004
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significant positive relationship between the ratio of subjects with psychiatric comorbidity in
each node and the node index for the NYU (r = 0.85, p<0.0005) and PU (r = 0.87, p<0.0005)
datasets, respectively.

Discussion
To the best of our knowledge, this is the first attempt to incorporate the HSM and topological
data analysis for unveiling hidden relationships between clinical phenotypic variables of inter-
est, such as IQ, symptom severity, and comorbidity rate of ADHD, and data on brain func-
tional connectivity. The two methodologies were applied for the first time to create an
objective measure of disease severity and a partial clustering model of patients with ADHD
based on neuroimaging data. These two methods, when used in combination, might be promis-
ing tools to quantify disease components within brain networks.

Interpretation of topological data analysis
The partial clustering methods through topological data analysis produced an easily recogniz-
able chain-like graph (Fig 3). Originally, we expected thatMapper would yield a branch-shaped
graph with two progressive arms; each arm differentiating the inattentive subtype of ADHD
from the combined subtype, similar to two subtypes of breast cancer that were detected in a
previous study [31]. However, unlike our hypothesis, our analysis could not identify discrete
subgroups of ADHD to validate the DSM-IV subtype model of ADHD. This result is in line
with previous studies questioning the discriminant validity of the DSM-IV ADHD subtypes.
Studies of etiology, neuropsychological functioning, and treatment response do not provide
enough evidence for the distinction between ADHD-I and ADHD-C subtypes, even though
they provide support for the validity of the DSM-IV inattention and hyperactivity-impulsivity
symptom dimensions [37]. In addition, the strongest argument against the ADHD subtype
model is the instability of the subtype classification over time (only 35% meet criteria for the
same subtype after 5 years) [38]. Recently, the nosology of ADHD subtypes has been updated
in the DSM-V [39]: categorical subtypes of ADHD have been retained, but they are now
referred to as combined presentation, predominantly inattentive presentation, and predomi-
nantly hyperactive/impulsive presentation. This wording change from “subtype” to “presenta-
tion” reflects the fluidity in how the symptoms of disorder may present in the same individual
over time [38]. The model proposed by Lahey and Willcut (2010) defines ADHD as “a single
disorder without subtypes, with dimensional modifiers that reflect the number of inattention
and hyperactivity-impulsivity symptoms” [40]. Our results are consistent with this model of
ADHD, in which theMapper result is presented as a long gradual progression (Fig 3), showing
ADHD symptoms as dimensional (or quantitative) traits that form a continuum with the nor-
mal state.

Intelligence and the magnitude of disease component
According to our results (Fig 5C and 5D and Table 2), significant negative correlations
between the magnitude of the disease component (represented by the filter value) and the IQ
score were found in the TDC group but not in the ADHD group. Our results agree with recent
studies showing that brain structure (e.g., cerebral gray matter volume and white matter micro-
structure) or small-world network parameters were associated with IQ for controls, but not for
ADHD [41,42]. One possible explanation for these findings is that the relationship between
clinical measures (e.g., IQ score) and brain functional measures may vary depending on the
presence or absence of pathological processes. Therefore, certain relationships demonstrated in
healthy individuals may not be observed in clinical populations. However, our result is rather
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unexpected, since it is well known that ADHD symptoms can interfere with performance in
intelligence tests and adversely affect IQ scores [43]. In clinical practice, it is often observed
that performance IQ in ADHD children is on average 7–10 points lower than that of compari-
sons [6]. A previous study also suggested a negative association between ADHD symptoms
and IQ scores [43]. Taken together, further studies need to be done to clarify the relationship
between IQ score and ADHD symptoms in this patient population.

In other applications, the identification of TDC subjects who present with sub-threshold
ADHD symptoms is one of the key areas of biomarker research, because in mild forms of the
disease it is difficult to distinguish between disorder and normal groups in clinical practice
[21,44]. In these diagnostically ambiguous situations,Mapper presents its strength over stan-
dard clustering methods in that long gradual drifts in the graphs are visible, as shown in Fig 3,
implying the continuity from normal to progressively advanced disease symptoms [31]. Thus,
TDC subjects with higher values of the node index might be different from those with lower
values, even though they are clustered within the same TDC group. Our analysis of TDC sub-
jects with the highest value of the filter function showed that this subgroup differed signifi-
cantly from the TDC subjects with the lowest value; they were of younger age, had significantly
lower performance IQ, and more severe hyperactivity/impulsivity symptoms. A longitudinal
follow up of this subgroup of TDC will be needed to investigate whether these individuals con-
stitute a high-risk group who might eventually develop ADHD.

Comorbidity, ADHD symptom severity and the magnitude of disease
component
The presence of comorbidity has important implications for understanding assessment and
treatment of patients with ADHD; thus, we examined the association between the ratio of sub-
jects with comorbidity and the magnitude of disease component represented by the node index
in each node. Although several studies reported that neuropsychological deficits are similar in
patients with ADHD only and patients with ADHD plus comorbidity [45,46], other studies
reported the opposite result proclaiming that patients with ADHD plus comorbidity have
greater neuropsychological deficits than those with ADHD alone [47–49]. Our study supports
the later view showing that the rates of comorbidity in ADHD increase when the disease com-
ponent of functional connectivity (represented by the value of the filter function or node
index) is large; the greater the node index is, the higher the rates of comorbidity in ADHD
patients.

In addition, a significant positive correlation between the magnitude of the disease compo-
nent represented by the value of the filter function and ADHD index score was found in the
PU dataset (Fig 5B). However, significant correlations were not found in the NYU dataset (Fig
5A). Although the reasons for the different results from each institution are unclear at present,
one possible explanation would be the difference in phenotypic characterization of the study
samples at both sites. For example, ADHD symptoms were measured using different rating
scales in each institution (PU used the ADHD Rating Scale IV; NYU used the Conners’ Parent
Rating Scale-Revised, Long Version). Therefore, further studies to replicate the PU findings in
different datasets are needed to reach a definitive conclusion.

Limitations
The results mentioned above should be interpreted with caution with the following limitations
in mind. First, the ADHD-200 data have site-specific differences in behavioral measurement,
imaging data acquisition, scanner quality and protocols, and subject populations from the site
contributing to the data. To overcome these problems, we analyzed the NYU and PU dataset
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separately, and mainly presented the results from the NYU site for this study (Fig 2). Nonethe-
less, the comparison of the NYU dataset with the independent PU dataset produced very simi-
lar results, except for the one result regarding the association between the value of the filter
function and ADHD symptoms. Thus, the methodologies we propose may be considered as
relatively unaffected by these sources of variation and bias caused by differences between study
samples. Second, two groups were successfully identified on the basis of brain imaging data,
such as the magnitude of the disease component, but phenotypic information such as gender,
age, and medication status were not included in the topological data analysis. The demographic
information may also contribute greatly to the disease classification, as shown in the competi-
tion results from the ADHD-200 dataset, which shows that diagnosis based on demographic
variables outperforms imaging-based diagnostic prediction. Third, additional interaction
effects of disease duration and medication may further impact the neurobiological substrate in
specific ways [21] and future studies need to be consider these factors. Fourth, our findings
may not demonstrate specificity to ADHD. Given our finding that subjects who are most dif-
ferent from controls (larger value of the filter function) have more comorbid disorders, the
value of the filter function may reflect a brain of individuals who have more impairments.
Fifth, The magnitude of disease component obtained from the healthy state model might not
fully capture the complexity of the functional network, such as strength and direction of corre-
lations among different brain regions. Yet, it could tell us the amount of deviation in the func-
tional network as a single value, which is more convenient for further correlation analyses with
clinical variables.

Conclusions
Despite the limitations, we introduced the HSM and a topological clustering tool in the analysis
of neuroimaging data for identifying a brain-phenotypic relationship. We found that the mag-
nitude of the disease component obtained from HSM is significantly correlated with IQ scores
in the TDC group, and the resulting topology contained the information of symptom severity
or comorbidity rates of ADHD as function of node index. The application of HSM and topo-
logical data analysis methods to brain connectivity data might be a promising tool to quantify
the disease component of ADHD and reveal the hidden relationship between clinical pheno-
typic variables and brain connectivity.

Supporting Information
S1 File. Supplementary methods and results.Mean and standard deviations (SD) of the
symptom severity and intelligence scale in NYU dataset and PU dataset (Table A).Number of
subjects in each group (TDC and ADHD) for each bin of the output graph ofMapper for
NYU dataset (Table B). The effects of the phenotypic information to the magnitude of the dis-
ease component (Table C). The summary of receiver operating characteristic (ROC) analysis
using the value of the filter function (Table D). The decomposition of the original functional

connectivity vector Ti into the Normal component, which is the linear models fit TNc
i onto the

Healthy State Model, and the disease component TDc
i vector of residuals. For example, decom-

positions of Ti with (A) small and (B) large disease component were visualized (Fig A). The
areas under the receiver operating characteristics (ROC) curves for the value of the filter func-
tion were illustrated for (A) the NYU and (B) PU dataset, respectively (Fig B). Schematic dia-
gram of topological data analysis usingMapper. (A) The data is sampled from a noisy Y-shape
point cloud in the two-dimensional space, and the filter function is f(x,y) = y. We divided the
range of the filter into 5 intervals and a 50% overlap. (B) For each interval, we compute the
clustering of the points lying within the domain of the filter restricted to the interval.
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Distributions of the distances from single linkage dendrogram in each filter bin. For example,
distance distributions for 1st and 9th filter bin were presented. The summation of frequencies
appeared after zero bins is the number of clusters, (C) Finally, we have the simplicial complex
by connecting the clusters whenever they have non-empty intersection. The color of vertices
represents the average filter value (Fig C). Sample application ofMapper to the Y-shape noisy
point cloud. In this example illustration, 5 intervals with 20–80% overlaps and 10 intervals
with 80% overlap are the appropriate choose of the input parameters ofMapper (Fig D). Sam-
ple application ofMapper to O-shape noisy point cloud data. In this example illustration,
5 intervals with 50–80% overlaps, 10 intervals with 50–80% overlaps, and 15 intervals with
80% overlap are the appropriate choose of the input parameters ofMapper (Fig E). Visualiza-
tion of the clinical phenotype data as a function of the node index in the PU data: (A) The aver-
age symptom severity in each bin of graph; (B) The average intelligence scores in each bin of
graph (Fig F).
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