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Abstract 

Purpose: The prediction of atherosclerosis using retinal fundus images and deep 
learning has not been shown possible. The purpose of this study is to develop a 
deep learning model which predicts atherosclerosis using retinal fundus images and 
to verify its clinical implications by conducting a retrospective cohort analysis. 
Design: Retrospective cohort study. 
Methods: The database at Health Promotion Center of Seoul National University 
Hospital (HPC-SNUH) was used. The deep learning model was trained on 15,408 
images to predict carotid artery atherosclerosis, which we named the deep learning-
funduscopic atherosclerosis score (DL-FAS). We constructed a retrospective cohort 
of participants aged 30-80 years who had completed elective health check-ups at 
HPC-SNUH. Using DL-FAS the as the main exposure, we followed participants for 
the primary outcome of death due to CVD until Dec. 31st, 2017. 
Results: For predicting carotid artery atherosclerosis among testing-set subjects, the 
model achieved an AUROC, AUPRC, accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value of 0.713, 0.569, 0.583, 0.891, 0.404, 
0.465, and 0.865 respectively. The cohort comprised of 32,227 participants, 78 CVD 
deaths, and 7.6-year median follow-up. Those with DL-FAS greater than 0.66 had an 
increased risk of CVD deaths compared to DL-FAS<0.33 (HR, 95%CI; 8.83, 3.16-
24.7). Risk association was significant among intermediate and high Framingham 
risk score (FRS) subgroups. The DL-FAS improved the concordance by 0.0266 (95% 
CI, 0.0043-0.0489) over the FRS-only model. Relative integrated discrimination 
index (IDI) was 20.45% and net reclassification index (NRI) was 29.5%. 
Conclusions: We developed a deep learning model which can predict 
atherosclerosis from retinal fundus images. The resulting DL-FAS was an 
independent predictor of CVD deaths when adjusted for FRS and added predictive 
value over FRS. 
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Abstract 37 

Purpose: The prediction of atherosclerosis using retinal fundus images and deep 38 
learning has not been shown possible. The purpose of this study is to develop a deep 39 
learning model which predicts atherosclerosis using retinal fundus images and to verify 40 
its clinical implications by conducting a retrospective cohort analysis. 41 
Design: Retrospective cohort study. 42 
Methods: The database at Health Promotion Center of Seoul National University 43 
Hospital (HPC-SNUH) was used. The deep learning model was trained on 15,408 44 
images to predict carotid artery atherosclerosis, which we named the deep learning-45 
funduscopic atherosclerosis score (DL-FAS). We constructed a retrospective cohort of 46 
participants aged 30-80 years who had completed elective health check-ups at HPC-47 
SNUH. Using DL-FAS the as the main exposure, we followed participants for the 48 
primary outcome of death due to CVD until Dec. 31st, 2017. 49 
Results: For predicting carotid artery atherosclerosis among testing-set subjects, the 50 
model achieved an AUROC, AUPRC, accuracy, sensitivity, specificity, positive predictive 51 
value, and negative predictive value of 0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 52 
0.865 respectively. The cohort comprised of 32,227 participants, 78 CVD deaths, and 53 
7.6-year median follow-up. Those with DL-FAS greater than 0.66 had an increased risk 54 
of CVD deaths compared to DL-FAS<0.33 (HR, 95%CI; 8.83, 3.16-24.7). Risk 55 
association was significant among intermediate and high Framingham risk score (FRS) 56 
subgroups. The DL-FAS improved the concordance by 0.0266 (95% CI, 0.0043-0.0489) 57 
over the FRS-only model. Relative integrated discrimination index (IDI) was 20.45% and 58 
net reclassification index (NRI) was 29.5%. 59 
Conclusions: We developed a deep learning model which can predict atherosclerosis 60 
from retinal fundus images. The resulting DL-FAS was an independent predictor of CVD 61 
deaths when adjusted for FRS and added predictive value over FRS. 62 
 63 
  64 
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The prediction of atherosclerosis using retinal fundus images and deep learning has not 66 

been shown possible. This study develops and validates a deep learning model for 67 

atherosclerosis prediction using retinal fundus images. A retrospective cohort analysis 68 
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atherosclerosis score (DL-FAS) shows significantly added value beyond Framingham 70 

risk score. The DL-FAS may allow retinal fundus imaging to be used as a non-invasive 71 

screening tool for CVD. 72 
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Introduction 74 

Cardiovascular disease (CVD) is the most common cause of death worldwide and 75 
accounts for 32% of all deaths1. In 2015, CVD affected more than 400 million patients 76 
and caused more than 17 million deaths worldwide2. Thus, the assessment of CVD risk 77 
and the prevention thereof is of clinical importance.  78 

Retinal fundus imaging contains valuable information regarding vascular health3 4 5 79 
6, and with the emergence of computer assisted retinal imaging, various measurements 80 
using this modality has been shown to correlate with severity of heart failure7, certain 81 
stoke subtypes8, and hypertension9.  82 

Recent developments in deep learning has revealed that CVD risk factors such as 83 
age, sex, and smoking status could be predicted using retinal fundus images10. 84 
However, the prediction of atherosclerosis, a subclinical marker of CVD, using retinal 85 
fundus imaging and deep learning has not been shown possible yet. Furthermore, the 86 
clinical implications of prediction of cardiovascular-related risk factors by retinal fundus 87 
imaging have not been addressed in terms of reclassification of patients at risk of CVD 88 
and time-to-event analysis. A formal analysis of additional benefits to the risk 89 
stratification of patients and time-to-event analysis can provide clinicians evidence to 90 
consider retinal fundus imaging for assessing patients of borderline CVD-risk. 91 

In this study, we developed and validated a deep model which uses retinal fundus 92 
images to predict whether a patient has atherosclerosis. We named the predicted value 93 
the deep learning-funduscopic atherosclerosis score (DL-FAS). Furthermore, we 94 
determined whether DL-FAS added value to the prediction of cardiovascular death 95 
above that of the Framingham Risk Score (FRS) and conducted a retrospective cohort 96 
of over 30,000 patients for incident cardiovascular deaths. 97 

 98 

Methods 99 

Study Population  100 
Data of participants who had completed medical check-ups at the Health 101 

Promotion Center of Seoul National University Hospital (HPC-SNUH)11, from January 102 
2005 through December 2016, and received a retinal fundus image exam, were used 103 
for this study. HPC-SNUH offers elective medical health check-ups including a survey, 104 
physical examinations, laboratory testing, and medical imaging. Participants must 105 
subscribe to one of many packages available at HPC-SNUH and are not offered based 106 
on any indication. Retinal fundus imaging is included in all packages, however carotid 107 
artery sonography is only offered for more expensive packages. Participant data was 108 
merged with the National Death Certificate database to ascertain the death status and 109 
cause of death up to December 31st, 2017. Patients were anonymized before analysis 110 
was performed, and the need for patient consent was waived by the institutional review 111 
board at SNUH (IRB#: H-1703-044-837). 112 

The deep learning model was validated using two-phase approach. Firstly, 113 
during the training phase, participants with retinal fundus examinations plus carotid 114 
artery sonography were used to develop the deep model for prediction of 115 
atherosclerosis (n=6,597). These patients were divided into the training, validation, and 116 
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testing sets, where the testing set patients were used to determine whether the model 117 
accurately predicted atherosclerosis. The deep model makes predictions for one eye 118 
image at a time, and the final averaged score of both eyes was named as the deep 119 
learning-funduscopic atherosclerosis score (DL-FAS). Secondly, during the cohort 120 
phase, those with only retinal fundus examinations but without carotid artery 121 
sonography (n=32,227) were used to validate whether the DL-FAS could predict future 122 
cardiovascular deaths. The two-phased validation approach is essential because (1) the 123 
ability to predict atherosclerosis must be verified with cardiovascular mortality studies to 124 
draw meaningful clinical implications and contribute to clinical decision making and (2) a 125 
one-phase approach to directly predict cardiovascular death would ignore time-to-event 126 
analysis and provide no meaningful etiological insights. 127 
Carotid artery atherosclerosis measurement 128 
 The carotid artery intima-media thickness (CIMT) and existence of carotid artery 129 
plaque was used as the proxy marker for atherosclerosis. CIMT was measured through 130 
ultrasonography by averaging three measurements 10 mm proximal to the bifurcation 12. 131 
The far wall IMT was identified as the region between the lumen-intima interface and 132 
the media-adventitia interface. Those with CIMT measurements of 0.9 mm or more 13 or 133 
carotid artery plaque 14 were considered to have atherosclerosis. While thresholds of 134 
higher than 0.9 mm are better correlated to CVD outcomes 15, a conservative threshold 135 
of 0.9 mm was used because atherosclerosis develops gradually over time and retinal 136 
features may be present in earlier stages of disease. Carotid artery plaque was defined 137 
as a focal increase in thickness of 0.5 mm or 50% of the surrounding CIMT value. Both 138 
the left and right carotid arteries were measured. The carotid artery findings were based 139 
on the sonography reports written by board-trained radiologists. For confirmation and 140 
data-cleaning, all ultrasonographic images and corresponding reports were reviewed by 141 
four board-trained family medicine physicians. 142 
Acquisition of retinal fundus images 143 

A Canon CR-2 (Tokyo, Japan), a digital non-mydriatic fundus camera16, was 144 
used to obtain retinal fundus images. Patients were not pupil-dilated and took one color 145 
fundus photo per eye. The field of view included both the disc and macula and was 146 
limited to a 45° angle of view. 147 
Deep learning model development and validation 148 

Patients with both retinal fundus imaging and carotid artery sonography on the 149 
same health-checkup were used to train and tune the deep model. The training, 150 
validation, and testing sets were divided on a patient level as outlined in Supplementary 151 
Figure 2. A total of 15,408 images were used in the training process of the model. 5,296 152 
patients were used for training, 647 patients were used for tuning, and 654 patients 153 
were used for testing (Supplementary Table 1). Each set had a similar proportion of 154 
atherosclerosis positive images (Supplementary Table 1). 155 

Training a deep learning model comes in three basic steps. Firstly, the retinal 156 
fundus image is input to the deep learning model which produces a prediction score 157 
between 0 and 1. Secondly, the prediction score is compared to the correct label of 158 
either atherosclerosis (1) or no atherosclerosis (0) measured by carotid artery 159 
sonography. Thirdly, the model’s weights are adjusted to minimize its prediction error. 160 

The Xception model 17 was used as the feature extractor followed by two fully 161 
connected layers. To speed up training, we used transfer learning with the Keras 162 
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software library (version 2.3.1), where the model weights are initialized with pretrained 163 
weights learned from ImageNet18. Image pre-processing such as random zoom or 164 
horizontal flip were used to prevent over-fitting. 165 

During validation, the deep learning model outputs a prediction ranging between 166 
0 and 1 for each eye which results in two prediction values for each patient per visit. To 167 
prevent duplicate patients, the DL-FAS was calculated for each patient-visit and defined 168 
as the average of predictions for both eyes. The area under receiver operating curve 169 
(AUROC) and area under the precision-recall curve (AUPRC) were calculated. The 170 
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive 171 
value (NPV) were calculated using a threshold resulting in the maximum F1 score. The 172 
F1 score is calculated as 2 * (Precision * Recall) / (Precision + Recall). We identified 173 
saliency features using guided backpropagation19, 20 (Supplementary Figure 1). 174 
Cohort Construction 175 

 A retrospective cohort study was performed using patients aged 30 to 80 years 176 
with the index date set to their first medical health examination between 2005 through 177 
2016. Participants who were used for training the deep model were excluded in the 178 
cohort study. Those with missing non-survey covariates were excluded. These patients 179 
are referred to as the cohort set and mutually exclusive to the training, validation, and 180 
test sets. 181 

The primary exposure was the DL-FAS determined using retinal fundus images 182 
taken on the day of enrollment. Because the DL-FAS ranges between 0 and 1, the 183 
model thresholds were chosen so that each score category had equal range, namely 0 184 
to 0.33, 0.33 to 0.67, and 0.67 to 1.0. For the stratified analysis, we used score 185 
categories resulting in an equal number of people per category, i.e. terciles. The 186 
methods for development and validation of the deep model is described in, “Deep 187 
learning model development and validation”. 188 

The primary endpoint of the study was cardiovascular mortality defined 189 
according to the International Classification for Diseases 10th Revision codes I00 to I99. 190 
Patients were followed until Dec. 31st, 2017. The secondary endpoint of the study was 191 
all-cause mortality. 192 
Exposure and Covariates 193 

For adjustment of conventional risk factors, FRS was calculated using age, sex, 194 
high-density lipoprotein cholesterol, systolic blood pressure, and current smoker 21. For 195 
stratified analysis, high, intermediate, and low risk patients were defined as FRS≥20%, 196 
FRS 10-19%, and FRS<10%, respectively. 197 

For additional adjustment, body mass index, alcohol consumption, exercise 198 
frequency, diabetes, hypertension, and dyslipidemia were considered. Diabetes was 199 
defined as self-reported diabetes, self-reported diabetic medication history, fasting 200 
blood glucose > 126 mg/dL, or HbA1c ≥ 6.5%; hypertension as self-reported 201 
antihypertensive medication history; and dyslipidemia as low density lipoprotein >160 202 
mg/dL or self-reported medication history. Missing survey variables were considered as 203 
a category of their own. 204 
Statistical Analysis 205 

The discrimination, calibration, and reclassification of predicted atherosclerosis 206 
score over FRS risk levels was assessed for predicting cardiovascular deaths among 207 
cohort-phase patients. Logistic regression was used to model cardiovascular deaths 208 
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using FRS risk levels (1) or FRS risk levels plus DL-FAS (2). The relative integrated 209 
discrimination improvement (IDI)22, category-free net reclassification improvement 210 
(NRI)22, and Hosmer-Lemeshow Chi-Square Test with 10 groups 23 was performed by 211 
comparing the logits of these two models. 212 

For a time-to-event analysis, a multivariable Cox regression model was used to 213 
estimate the hazard ratio and 95% confidence intervals. To show whether the DL-FAS 214 
significantly added to the CVD mortality prediction of FRS risk scores21, we calculated 215 
the c-statistic estimates for Cox regression models using FRS risk levels versus FRS 216 
risk levels plus DL-FAS. The difference of these concordances was calculated to see 217 
whether the addition of the DL-FAS significantly improved the concordance estimate. 218 
Concordance estimates and difference of concordance estimates were calculated using 219 
Uno’s method 24. All statistical analysis was performed using Statistical Analysis System 220 
9.0 (SAS Institute North Carolina, United States of America). 221 

Results 222 

 Among 751 testing set patient visits with 276 tested positive for carotid artery 223 
atherosclerosis (prevalence, 0.368), the model was able to predict the sonography-224 
confirmed carotid artery atherosclerosis with an AUROC of 0.713 and AUPRC of 0.569. 225 
The model achieved an F1 score of 0.611 at the optimal DL-FAS threshold of 0.368. The 226 
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive 227 
value (NPV) were 0.583, 0.891, 0.404, 0.465, and 0.865 respectively, indicating a 228 
predictive model driven by low specificity. Saliency maps positively identified the retinal 229 
vessels contributing to positive atherosclerosis prediction as well as pathologic findings 230 
including disc rim narrowing, increased cup-to-disc ratio, peripapillary atrophy, and 231 
cotton wool spots (Supplementary Figure 1). 232 

For the validation of the atherosclerosis score to predict cardiovascular mortality, 233 
we used the deep model to predict the atherosclerosis of cohort set patients and 234 
conducted prediction analysis and a time-to-event analysis. The cohort consisted of 235 
32,227 patients (Figure 2) with varying characteristics with respect to their DL-FAS 236 
(Table 1). Of 32,227 patients in the cohort, only 0.23% (74) patients had only one eye 237 
image and 99.8% had images for both eyes. The resulting DL-FAS variances were 238 
similar—0.025 and 0.021, respectively. There was a strong association between the DL-239 
FAS and age, sex, and FRS risk level. The median follow-up for the study was 7.6 years, 240 
with 78 incident CVD deaths. 241 

The prediction modelling was performed for cardiovascular mortality of a logistic 242 
model using only FRS risk levels versus a model using FRS risk levels plus DL-FAS. 243 
The IDI analysis showed that the model using FRS risk levels plus DL-FAS had IDI of 244 
0.0007 (p-value=0.008) and relative IDI of 20.45% over the model using FRS risk levels 245 
alone. Category-free NRI was 29.5% (p-value=0.009). Hosmer Lemeshow Chi Square 246 
Test showed p-value of 0.427 for the FRS model and p-value=0.609 for the FRS plus 247 
DL-FAS model, indicating no evidence for poor fitting. 248 

For the time-to-event analysis, the hazard ratios for each DL-FAS score group 249 
were calculated for CVD mortality, adjusting for FRS and other baseline risk factors 250 
(Table 2). Compared to the lowest atherosclerosis score group, those with scores 0.33-251 
0.67 and 0.67-1.00 had significantly higher risk of CVD mortality (HR, 95%CI; 2.94, 252 
1.41-6.15; 8.83, 3.16-24.7; respectively). This positive association showed significant 253 
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trend (p for trend <0.001). DL-FAS was associated with CVD mortality when adjusted for 254 
all baseline covariates in their single covariate forms (Supplementary Table 2). Among 255 
individual covariates in the multivariable model, only age, systolic blood pressure, and 256 
smoking status were significantly associated with CVD mortality (Supplementary Table 257 
2). The DL-FAS was also associated with all-cause mortality (Supplementary Table 3). 258 

Because DL-FAS were highly correlated with FRS, age, and sex, a stratified 259 
analysis was performed for subgroups based on age, sex, and FRS risk levels (Table 3). 260 
For subgroups of low, intermediate, and high risk, the highest tercile of DL-FAS had 261 
significantly higher risk of CVD mortality compared to the lowest tercile (HR, 95%CI; 262 
4.76, 1.05-21.63; 3.14,1.04-9.47; 5.11, 1.94-13.5; respectively) with significant trend (p 263 
for trend; 0.038; 0.032; 0.001; respectively). 264 

For subgroups of patients aged 30-49 years, DL-FAS was not significantly 265 
associated with CVD mortality (HR, 95%CI; 1.69, 0.39-7.25; 0.34, 0.03-4.00; 266 
respectively). Among those 50 years or more, the highest and middle terciles had 267 
significantly higher risk of CVD mortality compared to the lowest tercile (HR, 95%CI; 268 
2.66, 1.15-6.17; 5.09, 2.25-11.6; respectively) with significant trend (p for trend, <0.001). 269 
Among both male and female participants, the highest tercile of DL-FAS was associated 270 
with a higher risk of CVD mortality compared to the lowest tercile (HR, 95% CI; 3.03, 271 
1.14-8.09; 9.61, 1.95-47.3; respectively). 272 

The concordance estimates for the Cox regression model fitted on FRS only had 273 
a concordance of 0.78 (0.73-0.82); the model fitted on FRS plus DL-FAS had a 274 
concordance of 0.81 (0.76-0.85). The improvement in concordance was 0.0266 with p-275 
for-difference of 0.020 (Supplementary Table 4). 276 

Discussion 277 

The purpose of our study was to develop a measurement using retinal fundus 278 
images which could predict atherosclerosis and stratify the cardiovascular risk of 279 
patients over conventional risk factors such as FRS, diabetes, hypertension, 280 
dyslipidemia, and health habits. We trained a deep model which predicted 281 
atherosclerosis with moderate predictive performance, and the resulting DL-FAS was 282 
significantly associated with an increased hazard for CVD mortality among a cohort of 283 
otherwise-healthy participants after adjustment for FRS. Furthermore, the significant risk 284 
association was evident in the stratified analysis of intermediate-risk participants, and 285 
the addition of the DL-FAS significantly improved the concordance estimate over the 286 
FRS only model. 287 

Our work is novel in several points. First, the prediction of atherosclerosis using 288 
retinal fundus images and deep learning has not been done . Second, our work 289 
provides validation using not only a cross-sectional analysis, but also a longitudinal 290 
retrospective cohort for CVD mortality outcomes. Using a cohort to verify newly 291 
developed deep learning measurements is uncommon. Third, our work shows that the 292 
DL-FAS is an independent predictor of CVD mortality over conventional risk estimates 293 
such as the FRS. Some have used deep learning to predict cardiovascular risk factors 294 
such as age, sex, and blood pressure, but did not show the added diagnostic value of 295 
their models over conventional risk-estimate models10. 296 
The Predictive Value of DL-FAS 297 

Our results show not only that retinal fundus images may be used to predict the 298 
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atherosclerosis of the carotid arteries but also that this prediction may add to 299 
conventional risk-stratification scores such as the Framingham Risk Score for 300 
longitudinal outcomes of cardiovascular mortality. Previous meta-analysis and cohort 301 
studies have analyzed the added predictive value of c-reactive protein(CRP)25, carotid 302 
artery intima-media thickness(CIMT)26, CT coronary artery calcium score (CTCS)27, 28, 303 
and ankle-brachial index(ABI)29, 30 beyond FRS. Improvement of c-statistics above 304 
conventional risk factors and Framingham risk score were insignificant for CIMT (0.00-305 
0.002) 26, 27, ABI (0.00-0.002) 27, 30, and CRP (0.00) 27 while improvements were mostly 306 
significant for CTCS (0.02-0.13) 27, 28. In our work, the improved concordance estimate 307 
of DL-FAS for cardiovascular mortality was small but significant (0.027; 95% CI, 0.004-308 
0.049), and relative IDI and NRI measures were also significant at 20.45% and 29.5%, 309 
respectively. 310 

One important result of this study is that the DL-FAS showed significant 311 
association even among intermediate risk patients. The risk-stratification of such 312 
patients has been an area of considerable research, as conventional risk estimates may 313 
underestimate risk of patients with evidence of asymptomatic preclinical 314 
atherosclerosis31. The American College of Cardiology Foundation/American Heart 315 
Association (ACC/AHA)32 and the European Society of Cardiology (ESC)33 guidelines 316 
recommend further investigation for intermediate/moderate risk patients to search for 317 
target organ damage including coronary artery calcium score, ankle-brachial index, and 318 
atherosclerotic plaque detection by carotid artery scanning. Conducting a retinal fundus 319 
image exam for all such patients may be premature at this this stage, but our results 320 
show an added benefit of using the DL-FAS among intermediate risk patients. Because 321 
retinal fundus imaging is non-invasive compared to blood tests, it may find new 322 
possibilities for utilization in stratifying intermediate risk patients. 323 
Mechanism and features 324 

The mechanism by which the deep learning model predicts atherosclerosis is 325 
not clear, but we think that the deep model recognized features of the retinal 326 
microvasculature to predict atherosclerosis. Many studies have verified significant 327 
relationships between findings of retinal fundus images and cardiovascular disease. 328 
Retinal vascular pathology is associated with cerebral small vessel disease34. 329 
Arteriovenous nicking is associated with increased odds of cardiovascular mortality35. 330 
Retinal vascular caliber is associated with greater risk of death due to coronary heart 331 
disease36. Retinal microvascular hemorrhage, microaneurysms, soft exudates, and 332 
arteriovenous nicking are associated with an increased risk of stroke37. Tortuosity is 333 
associated with death due to ischemic heart disease38. These studies show that the 334 
retinal fundus images hold valuable information regarding cardiovascular health, which 335 
we presume our model was able to extract. 336 

The saliency maps using guided backpropagation showed that retinal vessels 337 
were making positive contributions to the atherosclerosis prediction. Previous works 338 
have used retinal fundus images to predict anemia 20 or other cardiovascular risk factors 339 
10 using deep learning and have provided similar saliency maps which identify vascular 340 
anatomy. Our work suggests that certain changes in the retinal vasculature may be a 341 
biomarker for atherosclerosis. Furthermore, some saliency maps identified pathologic 342 
findings related to glaucoma, such as increased cup-to-disc ratio, disc rim narrowing, 343 
peripapillary atrophy, and cotton wool spots, which suggests the possible association 344 
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between glaucomatous and atherosclerotic change via overlapping mechanisms of 345 
hypertension. 346 
Limitations and strengths 347 

 Our study must be interpreted considering the following limitations. Firstly, our 348 
database constructed using single-center data and consists entirely of Korean nationals. 349 
The generalizability of our results may be limited because CVD risk is dependent on 350 
ethnicity39. Further research is warranted on the development of DL-FAS using multi-351 
ethnic populations. Secondly, while the threshold-independent metric of DL-FAS for 352 
prediction of atherosclerosis was greater than baseline, the DL-FAS had low accuracy 353 
and specificity at the designated threshold. At the current threshold, the DL-FAS may 354 
not be fit for specific detection of atherosclerosis. Thirdly, the DL-FAS did not 355 
significantly increase the risk of cardiovascular death among those under 50 years of 356 
age. While this was most likely due to the small number of cardiovascular deaths, the 357 
application of the DL-FAS among younger age groups may not be appropriate.  358 
Fourthly, incident cardiovascular disease, myocardial infarction, or stroke information 359 
was not available for the current study, and the primary endpoint of our study was death 360 
due to cardiovascular diseases. Hence, such low event rates limit the interpretability of 361 
event classification. Our results may not accurately estimate risk of incident sudden 362 
cardiovascular diseases like stroke, myocardial infarction, or heart failure. Finally, we did 363 
not have access to medical charts to verify the CVD mortality outcomes in the death 364 
certificate database. While, by law, only medical professionals can issue death 365 
certificates, the lack of a robust chart review may cause misclassification bias.  366 

In our work, we trained a classifier for atherosclerosis prediction then used it for 367 
a time-to-event Cox analysis, but several alternative methods may improve the results. 368 
The use of Cox directly as a loss function to train the deep model or the incorporation of 369 
covariate factors as auxiliary inputs may further improve the predictive value of the deep 370 
model. Though these methods provide an opportunity for improved performance, our 371 
purpose was not to produce the best model possible but to 1) predict and screen 372 
atherosclerosis using retinal fundus images via deep learning and 2) to validate its 373 
clinical implications using analyses of risk stratification, cardiovascular mortality 374 
association, and improvement beyond FRS. Our purpose was achievable with a deep 375 
model using retinal fundus images alone. However, technical optimizations for 376 
improvements in predictive power merits future work. 377 

The strengths of our work include the cross-sectional and longitudinal cohort 378 
study design, the analysis of a novel measurement over conventional risk factors, and 379 
the comparison of concordance estimates of the cohort analysis. The DL-FAS was not 380 
only a good predictor of atherosclerosis at one point in time but also associated with 381 
incident cardiovascular deaths in the cohort analysis of 245,900 person-years. The 382 
adjustment for multiple conventional risk factors namely FRS, body mass index, 383 
diabetes, hypertension, dyslipidemia, and other health habits, indicates the DL-FAS is 384 
an independent predictor, even within the intermediate risk patient strata. Furthermore, 385 
the comparison of concordance estimates between FRS-only and FRS plus DL-FAS 386 
shows the added benefit of adjusting for atherosclerosis score derived from retinal 387 
fundus images. 388 
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Conclusion 389 

In this single-center retrospective cohort study of Koreans, we showed that a 390 
deep model could be used to predict atherosclerosis using retinal fundus images. 391 
Furthermore, we showed that the resulting DL-FAS was associated with CVD mortality 392 
after adjustment of conventional risk factors including FRS and increased the c-statistic 393 
of the Cox model beyond FRS. 394 

 395 
 396 

  397 
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Figures Captions 526 

Central Illustration. Overview Schematic of Deep Learning Model Development and 527 
Clinical Validation using Retrospective Cohort Study. 528 

 529 

Abbreviations: IDI, integrated discrimination index; NRI, net reclassification index. 530 

Caption: The central illustration shows the overview of the development and clinical 531 
validation of the deep learning-funduscopic atherosclerosis score. The model is 532 
developed using participants with existing carotid artery sonography data along with 533 
retinal fundus images. Patients are randomized patient-wise into training, validation, and 534 
testing sets. For clinical validation, participants of age 30 to 80 years with retinal fundus 535 
images only are selected and used for calculation of the DL-FAS using the developed 536 
model. The DL-FAS is then used as the primary exposure for the prediction analysis 537 
and time-to-event analysis of cardiovascular mortality. 538 

 539 

Figure 1. The performance metric curves and saliency map of Deep Learning-540 
Funduscopic Atherosclerosis Score for prediction of atherosclerosis and Cox model-fit-541 
statistics beyond Framingham Risk Score. 542 

Caption: a The ROC curve for prediction of atherosclerosis using DL-FAS among the 543 
test set patients. b The PRC curve for prediction of atherosclerosis using DL-FAS among 544 
the test set patients. c The time-dependent AUROC of FRS only and FRS plus DL-FAS 545 
Cox models among cohort set patients calculated by Uno’s method based on 50 546 
perturbed samples. d Saliency map representation using guided backpropagation for 547 
contributions toward positive DL-FAS. 548 

 549 

Figure 2. Design of cohort 550 

Caption: No caption. 551 
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Table 1. Characteristics of cohort set participants aged 30-80 years whose retinal fundus 1 
photographs were not used for training the deep model. 2 

 
Total 

DL-Funduscopic Atherosclerosis Score 

0-0.33 0.33-0.67 0.67-1.0 

Total, n 32,227 13,057 18,310 860 

Age, mean (std) 52.6 (10.6) 44.2 (7.0) 57.6 (8.3) 71.7 (6.3) 

Male Sex, % 49.5 44.8 52.6 57.0 

Body Mass Index, %     

<23 kg/m2 41.9 46.6 38.6 40.9 

23-25 kg/m2 25.9 23.9 27.3 25.0 

≥25 kg/m2 32.2 29.5 34.1 34.1 

FRS Risk Level a, %     

Low 58.9 82.5 44.1 15.0 

Intermediate 26.3 14.8 34.2 32.4 

High 14.8 2.6 21.8 52.6 

Cigarette Smoking, %     

Never 47.1 48.9 46.1 43.5 

Past 20.3 15.8 23.1 29.0 

Current 16.6 19.4 14.9 9.8 

Missing 16.0 16.0 15.9 17.8 
Alcohol 
Consumption, % 

    

Non-drinker 41.3 41.8 40.4 51.6 

Current-Drinker 37.4 35.4 39.2 29.5 

Missing 21.3 22.8 20.3 18.8 

Exercise Frequency, %     

Regular 31.6 35.9 28.7 27.6 

None 39.2 35.0 42.4 36.4 

Missing 29.2 29.1 29.0 36.0 

Diabetesb, %     

Yes 19.1 12.2 23.2 37.1 

Hypertension c, %     

Yes 17.3 6.1 23.7 49.7 

Dyslipidemia d, %     

Yes 31.8 33.0 30.8 33.8 
Abbreviations: DL, deep learning; FRS, Framingham Risk Score. 3 

a calculated using age, sex, high-density lipoprotein cholesterol, systolic blood pressure, smoker. 4 
b Self-reported diabetes, self-reported diabetic medication history, fasting blood glucose > 126 5 



2 

mg/dL, or HbA1c ≥ 6.5% c Self-reported antihypertensive medication history. d Low density 6 
lipoprotein >160 mg/dL or self-reported medication history 7 
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Table 2. Risk of CVD mortality according to predicted atherosclerosis score using multivariable 1 
Cox regression model. 2 

 DL-Funduscopic Atherosclerosis Score  
 0-0.33 0.33-0.67 0.67-1 P-trend 
CVD mortality     

Cases, n 10 59 9  
Person-years, 103 118.7 123.2 4.0  
Incidence Rate, /103 PY 0.08 0.48 2.25  
aHRa (95% CI) 1 (ref.) 2.94 (1.41-6.15) 8.83 (3.16-24.7) <0.001 

Abbreviations: aHR, adjusted hazards ratio; CVD, cardiovascular disease; DL, deep learning; Q, 3 
quantile. 4 

aAdjusted for Framingham Risk Score 10-year CVD risk (including age, sex, high-density 5 
lipoprotein cholesterol, total cholesterol, systolic blood pressure, smoker), body mass index, 6 
alcohol consumption, exercise frequency, diabetes, hypertension, and dyslipidemia. 7 
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Table 3. Risk of CVD mortality by predicted atherosclerosis score stratified by FRS risk level 1 
and age. 2 

 DL-Funduscopic Atherosclerosis Score  
 Q1 Q2 Q3 P-trend 
FRS Low risk     

Quantile limits 0.05-0.25 0.25-0.38 0.38-0.8  
Cases, n 3 5 7  
Person-years, 103 61.1 47.9 35.3  
Incidence Rate, /103 PY 0.05 0.10 0.20  
aHRa (95% CI) 1 (ref.) 2.25 (0.51-9.96) 4.76 (1.05-21.6) 0.038 

FRS Intermediate risk     
Quantile limits 0.12-0.38 0.38-0.5 0.5-0.81  
Cases, n 5 7 12  
Person-years, 103 27.1 21.4 16.3  
Incidence Rate, /103 PY 0.18 0.33 0.74  
aHRa (95% CI) 1 (ref.) 1.50 (0.46-4.84) 3.14 (1.04-9.47) 0.032 

FRS High risk     
Quantile limits 0.17-0.46 0.46-0.57 0.57-0.81  
Cases, n 6 15 18  
Person-years, 103 15.0 12.4 9.4  
Incidence Rate, /103 PY 0.40 1.21 1.91  
aHRa (95% CI) 1 (ref.) 3.09 (1.18-8.06) 5.11 (1.94-13.5) 0.001 

Age, 30-49 years     
Quantile limits 0.05-0.22 0.22-0.3 0.3-0.73  
Cases, n 3 6 1  
Person-years, 103 42.1 36.1 23.2  
Incidence Rate, /103 PY 0.07 0.17 0.04  
aHRa (95% CI) 1 (ref.) 1.69 (0.39-7.25) 0.34 (0.03-4.00) 0.5342 

Age, 50 years or more     
Quantile limits 0.13-0.4 0.4-0.51 0.51-0.81  
Cases, n 8 19 35  
Person-years, 103 60.9 45.7 37.2  
Incidence Rate, /103 PY 0.13 0.42 0.94  
aHRa (95% CI) 1 (ref.) 2.66 (1.15-6.17) 5.09 (2.25-11.6) <0.001 

Male     
Quantile limits 0.07-0.32 0.32-0.46 0.46-0.81  
Cases, n 7 10 37  
Person-years, 103 48.7 40.5 32.9  
Incidence Rate, /103 PY 0.14 0.25 1.12  
aHRa (95% CI) 1 (ref.) 0.99 (0.36-2.75) 3.03 (1.14-8.09) 0.003 

Female     
Quantile limits 0.05-0.29 0.29-0.44 0.44-0.81  
Cases, n 2 5 17  
Person-years, 103 51.3 40.7 31.7  
Incidence Rate, /103 PY 0.04 0.12 0.54  



2 

aHRa (95% CI) 1 (ref.) 2.63 (0.49-14.0) 9.61 (1.95-47.3) 0.001 
Abbreviations: aHR, adjusted hazards ratio; CVD, cardiovascular disease; DL, deep learning; 3 
FRS, Framingham Risk Score; Q, quantile. 4 

aAdjusted for Framingham Risk Score 10-year CVD risk (including age, sex, high-density 5 
lipoprotein cholesterol, total cholesterol, systolic blood pressure, smoker), body mass index, 6 
alcohol consumption, exercise frequency, diabetes, hypertension, and dyslipidemia. 7 
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a. b. c.

d.



Patients aged 30-80 years who have
undergone health examinations with 

retinal fundus imaging during 2005-2016 
(N=39,003)

Exclude patients whose retinal 
photographs were used to train deep 

model (n=6,575)

Total patients included in the study 
(N=32,227)

Data cleaning for missing non-survey 
covariates (n=201)



Highlights 

� Retinal fundus imaging and deep learning may be used for stratification of CVD risk 
� Deep learning added predictive value over conventional CVD risk scoring methods 
� The developed model was verified on a large cohort of 30,000 Koreans 
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