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Improved Accuracy in Optical Diagnosis of Colorectal Polyps
Using Convolutional Neural Networks with Visual Explanations
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BACKGROUND & AIMS: Narrow-band imaging (NBI) can be
used to determine whether colorectal polyps are adenoma-
tous or hyperplastic. We investigated whether an artificial
intelligence (AI) system can increase the accuracy of char-
acterizations of polyps by endoscopists of different skill
levels. METHODS: We developed convolutional neural net-
works (CNNs) for evaluation of diminutive colorectal polyps,
based on efficient neural architecture searches via parameter
sharing with augmentation using NBIs of diminutive (�5
mm) polyps, collected from October 2015 through October
2017 at the Seoul National University Hospital, Healthcare
System Gangnam Center (training set). We trained the CNN
using images from 1100 adenomatous polyps and 1050 hy-
perplastic polyps from 1379 patients. We then tested the
system using 300 images of 180 adenomatous polyps and
120 hyperplastic polyps, obtained from January 2018 to May
2019. We compared the accuracy of 22 endoscopists of
different skill levels (7 novices, 4 experts, and 11 NBI-trained
experts) vs the CNN in evaluation of images (adenomatous vs
hyperplastic) from 180 adenomatous and 120 hyperplastic
polyps. The endoscopists then evaluated the polyp images
with knowledge of the CNN-processed results. We conducted
mixed-effect logistic and linear regression analyses to
determine the effects of AI assistance on the accuracy of
analysis of diminutive colorectal polyps by endoscopists
(primary outcome). RESULTS: The CNN distinguished
adenomatous vs hyperplastic diminutive polyps with 86.7%
accuracy, based on histologic analysis as the reference stan-
dard. Endoscopists distinguished adenomatous vs hyper-
plastic diminutive polyps with 82.5% overall accuracy
(novices, 73.8% accuracy; experts, 83.8% accuracy; and NBI-
trained experts, 87.6% accuracy). With knowledge of the
CNN-processed results, the overall accuracy of the endo-
scopists increased to 88.5% (P < .05). With knowledge of the
CNN-processed results, the accuracy of novice endoscopists
increased to 85.6% (P < .05). The CNN-processed results
significantly reduced endoscopist time of diagnosis (from 3.92
to 3.37 seconds per polyp, P ¼ .042). CONCLUSIONS: We
developed a CNN that significantly increases the accuracy of
evaluation of diminutive colorectal polyps (as adenomatous vs
hyperplastic) and reduces the time of diagnosis by
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Narrow-band imaging can be used to determine whether
colorectal polyps are adenomatous or hyperplastic.
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endoscopists. This AI assistance system significantly increased
the accuracy of analysis by novice endoscopists, who achieved
near-expert levels of accuracy without extra training. The CNN
assistance system can reduce the skill-level dependence of
endoscopists and costs.
Artificial intelligence systems might increase the
accuracy of characterization of narrow-band images of
polyps by endoscopists.

NEW FINDINGS

The researchers developed a convolutional neural
network system that significantly increased the accuracy
of evaluation of narrow-band images of diminutive
Keywords: Deep Learning; Colorectal Cancer; Cancer Screening;
Diagnostic.

olorectal cancer (CRC) is reported to be the third
1

colorectal polyps (as adenomatous vs hyperplastic) and
reduced time of diagnosis. This artificial intelligence
assistance system also significantly increased the
accuracy of analysis by novice endoscopists, who
achieved near-expert levels of accuracy without extra
training.

LIMITATIONS

This study was performed at a single center. Larger
studies are needed.

IMPACT

The artificial intelligence system can increase the
accuracy of evaluation of diminutive polyps by
endoscopists and reduce time of evaluation and costs.

* Authors share co-first authorship.

Abbreviations: AI, artificial intelligence; AutoML, automated machine
learning; CADx, computer-aided diagnosis; CNN, convolutional neural
networks; CRC, colorectal cancer; ENAS, efficient neural architecture
search via parameter sharing; Grad-CAM, gradient-weighted class acti-
vation mapping; NBI, narrow-band images.
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Cleading cause of death in the United States.
Furthermore, over the past several decades, the incidence
of CRC has significantly increased in Asian countries,
including Korea.2 Most CRCs usually develop from preexist-
ing adenomas, which are precancerous lesions, through the
adenoma–carcinoma sequence.3 In this regard, colonoscopy
is currently the most important screening test for CRC
because it can prevent CRC via the detection and subsequent
removal of precancerous adenomatous polyps.4 This is why
adenoma detection is considered a key quality indicator of
colonoscopy. Accordingly, considerable research efforts are
directed toward the increase of the adenoma detection rate
based on physician training and technical advances.

Although the detection and removal of adenoma contribute
toward the reduction of CRC, the increased medical costs,
including pathological analyses, alsomust be considered.4Most
adenomatous polyps detected during screening colonoscopy
arediminutivepolyps (�5mmin size).5,6 These rarelyprogress
to CRC. However, the current practice is to subject all polyps to
pathological evaluation.5,6 Diminutive hyperplastic polyps of
the rectosigmoid colon are very commonbenign lesions and do
not require removal.7 Moreover, discrepancies between endo-
scopic and pathologic diagnoses are not uncommon, and
pathological diagnosis is not the gold standard for diagnosing
colorectal polyps (�3 mm).8,9 Therefore, the application of an
accurate endoscopic diagnosis before resection is advanta-
geous because it prevents unnecessary resection and patho-
logical evaluation. In this regard, optical diagnosis based on
narrow-band imaging (NBI) can be used to predict the pathol-
ogy of colorectal polyps and assist the distinction between
adenomatous and hyperplastic colorectal polyps.10 However,
this implies that the endoscopist is sufficiently trained to
perform adequate optical diagnosis.11 Furthermore, such opti-
cal diagnosis is dependent on the endoscopist’s skill and
experience.12 However, this limitation can be overcome with
the newly developed computer-aided diagnosis (CADx).13

Meanwhile, recent advances in convolutional neural
networks (CNN), one of the deep-learning approaches, have
enabled their use in analyzing medical images. In this re-
gard, many studies have reported on the convergence of the
physician’s skills and the use of artificial intelligence (AI) to
afford accurate diagnoses.14–19 In particular, in the optical
diagnosis of colorectal polyps, CNN can afford high-
performance diagnostics and detection from various
colorectal-polyp images.20–23 However, even if the AI
approach affords high-performance colorectal-polyp diag-
nosis, endoscopists are currently required to perform a final
diagnosis for the reasons of safety and accountability, and
therefore, it is necessary to verify whether AI-based assis-
tance can effectively aid in the final diagnosis.17 Recently,
Shahidi et al9 introduced a real-time AI clinical decision
support solution and showed that it could help the final
diagnoses in the cases in which there were discrepancies
between the endoscopic and pathologic diagnoses for
diminutive polyps (�3 mm).

In this study, we developed a deep-learning algorithm
for the pathological classification of diminutive colorectal
polyps based on NBI, and we compared its performance
with those of endoscopists. Based on performance com-
parisons, we investigated the effect of AI assistance on the
diagnostic accuracy of different skill-level groups of endo-
scopists to determine whether the polyps are adenomatous
or hyperplastic from the NBI polyp images.

Methods
Study Design

This study was based on a multicenter study conducted
from October 2015 to July 2019. It consisted of 3 stages: (1)
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developed CNN for optical diagnosis of diminutive colorectal
polyps, (2) conducted an endoscopic performance assessment
and comparison with CNN (test 1), and (3) performed an
endoscopic performance with knowledge of the CNN-processed
results (test 2). The study protocol adhered to the ethical
guidelines of the 1975 Declaration of Helsinki and its subse-
quent revisions, and was approved by the institutional review
board (number H-1702-139-834). Written informed consent
was obtained from all participating physicians.

Datasets
For the development of CNN for optical diagnosis, we

retrospectively collected colonoscopic NBI of diminutive (�5
mm) polyps from October 2015 to October 2017 at the Seoul
National University Hospital, Healthcare System Gangnam. We
used the routine pathology report to provide patient care. All
polyps were removed using standard techniques and were
subsequently evaluated by 1 of the 16 board-certified pathol-
ogists at the Seoul National University Hospital. We used an
image set that was collected as part of the Gangnam-Real-Time
Optical Diagnosis (READI) program as described in detail by
Bae et al.24 All colonoscopies were performed using high-
definition colonoscopy (CF-HQ290; Olympus Co, Ltd., Tokyo,
Japan) and acquired NBI with or without near-focus magnifi-
cation. An endoscopist (E.H.J.) reviewed and selected well-
focused, high-quality images with appropriate brightness
values. If the optical diagnosis of a polyp was not compatible
with the histological reports, the images were excluded. Finally,
we trained the CNN with a total 1100 adenomatous polyps and
1050 hyperplastic polyps from 1379 patients (Supplementary
Table 1). For the test dataset, we prospectively collected 300
polyp images (180 adenomatous polyps and 120 hyperplastic
polyps) from January 2018 to May 2019 (Supplementary
Table 2). Figure 1 shows the polyp samples presented in
tests 1 and 2. The training, validation, and final test sets of
endoscopic images of NBI polyps exhibited no overlap.

Development of CNNs
Preprocessing. The polyp regions-of-interest in the im-

ages were used for the training, and validations were con-
ducted with the developed data acquisition program. These are
described in Supplementary Figure 1 in detail. The shape of the
polyp region-of-interest image was square and was resized to
128 � 128 to fit the input size of the CNN. A 5-fold cross-
validation was applied as the training step, and the augmen-
tation techniques were applied to generate the training data-
sets. A detailed description is presented in Supplementary
Figure 2.

Search for CNN architecture. This study used an
efficient neural architecture search via parameter sharing
(ENAS), which is one of the automated machine learning
(AutoML) methods.25 The general process of training a stan-
dard CNN is limited in that it requires (1) specialized knowl-
edge to design the architecture of CNN, and (2) trial-and-error
experimentation to tune the hyperparameters that is time-
consuming and expensive.25 For this reason, AutoML has
emerged and overcome the previous limitations and optimized
both the network architecture and hyperparameters based on
training methods. AutoML automates machine learning
modeling, algorithmic selection, and hyperparameter tuning.
Selecting and training CNN models requires the knowledge and
experience of engineers and experimentation based on trial and
errors. Therefore, the use of AutoML represents an attempt to
optimize this complex and time-consuming process based on
training, commonly referred to as the “learning to learn”
methodology. Figure 2 represents the results of the search ar-
chitecture based on training, and consists of repeating normal
and reduction cells. A detailed description is presented in the
“Description of CNN and Prediction Analysis” section in the
supplementary material.

Training and utilization of searched CNNs. The
training protocol of the model determined by the searching
method is presented in the “Description of CNN and Prediction
Analysis” section in the supplementary material. The utilization
of the predicted results is as follows. The diagnostic confidence
(probability) of hyperplastic and adenomatous polyps, which
are the results of SoftMax in an inference step, were presented
in a prospective study. In addition, a method of gradient-
weighted class activation mapping (Grad-CAM)26 was used to
indicate the location of probabilistic evidence, and a heatmap
overlaid on the polyp images diagnosed by the CNN was pre-
sented in a prospective study (Supplementary Figure 3). A
detailed description is presented in the “Description of CNN
and Prediction Analysis” section in the supplement.

This study compared the performance between inception-
v3,27 used in a previous study,21,22 and the proposed method.
Furthermore, we compared the results of the ENAS with those
of the training set with the use of an augmentation method. The
comparison of the performance outcomes include the accuracy,
sensitivity, specificity, negative and positive predictive values,
and diagnosis time, as listed in Table 1.

Evaluation of CNN and endoscopist
performances. Twenty-two endoscopists participated in
this study in 3 groups: (1) novices: 7 gastroenterology trainees
with less than 2 years of colonoscopic experience from the
Seoul National University Hospital, (2) experts: 4 board-
certificated gastroenterologists with various experiences in
NBI (co-authors: J.M.C., Y.M.H., S.J.K., J.L.), and (3) NBI-trained
experts: 11 board-certificated gastroenterologists who were
trained in optical diagnosis using NBIs (co-authors: J.H.B.,
H.Y.K., M.K., J.Y.S, J.I.Y., S.Y.Y., S.H.L., J.Y.Y., J.H.L., G.E.C., S.J.C.),
commonly referred to as the Gangnam-READI program
described in detail as in Bae et al24 (Supplementary Table 3).

The following 2-stage tests were conducted based on the
use of the validation dataset. All 300 NBI polyp images were de-
identified and randomly ordered in each test. In test 1, each
endoscopist independently evaluated the digital format of
polyp NBIs to determine whether the polyp was adenomatous
or hyperplastic test set on a retina display of a computer via an
online survey. After a month, they performed test 2 in the same
way as the previous test 1. In test 2, each endoscopist made an
optical diagnosis based on the original polyp NBI (test 1) and
the CNN-processed results. The AI results presented to the
physician were as follows: (1) AI predicted the pathology
(adenomatous or hyperplastic polyps), (2) confidence value,
and (3) both original NBI polyp image and an explanation
heatmap of the polyp NBI image obtained using Grad-CAM
(Figure 1). In addition, each test also recorded the start and
end times to calculate the average diagnostic time per polyp
image. After 2 tests, we conducted individual surveys for the
personality characteristics with the use of Grit-Original (Grit-O,



Figure 1. Illustration of experimental condition and polyp samples: (A, B, C, D) original NBIs, (a, b, c, d) visual explanation
heatmap overlaid on original NBI. In test 1, we presented the original NBIs, and the original NBIs and visual explanation
heatmap are presented in test 2.
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Korean version) with 2 components, namely, consistency of
interest and perseverance of effort.28 The Grit-O was validated
based on a questionnaire that comprised 12 items. It was
scored on a 5-point scale (from 1 to 5). The summed score was
divided by 12 to yield the final Grit score.29
Statistical Analyses
The main outcome of this study was to investigate the effect

of AI assistance on the improvement of the optical diagnostic
accuracy of endoscopists. The optical-diagnosis performances
of the CNN and the endoscopists (test 1) and those of the
endoscopists with AI assistance (test 2) were evaluated and
compared with the use of the McNemar test. We developed a
mixed-effects logistic regression model to estimate the effect of
AI assistance on the subgroups. Wilcoxon signed rank tests
were used to assess differences of diagnostic time between
nonassisted and AI-assisted assessments. The Grit scores were
analyzed using correlations and linear regression analyses. For
all the tests, a P value of .05 was considered to indicate sta-
tistical significance, and a P-value correction was performed. All
calculations were performed with the SAS (version 9.3; SAS
Institute, Cary, NC) software package.
Results
Performance Comparison Between
Endoscopists and CNN Performance (Test 1)

In this study, the CNN selected using ENAS with
augmentation techniques exhibited an optical diagnostic
accuracy of 86.7% (95% confidence interval 82.3–90.3),
with a sensitivity of 83.3% and a specificity of 91.7%. The
diagnostic performance of the CNN was compared with
those of 22 endoscopists (Table 2). Five of the 7 novices
yielded significantly lower diagnostic accuracies (47.7%–
79.0%) than the CNN (P < .05). Only 1 endoscopist (E1,
77.3%) of the 4 experts demonstrated significantly lower
diagnostic accuracy than the CNN (P < .05). Among the 11
NBI-trained expert endoscopists, 1 endoscopist (N-TE4,
92.7%) demonstrated statistically higher diagnostic accu-
racy than the CNN (P ¼ .011).
Diagnostic Accuracy Improvement With AI
Assistance (Test 2)

The overall accuracy of optical diagnosis was signifi-
cantly increased with the use of AI assistance (82.5% to
88.5%, P < .05) (Supplementary Table 4). Although AI
assistance appeared to improve the endoscopist perfor-
mances, it must be considered that this increase can vary
according to the endoscopist experiences. In the novice
group, all endoscopists demonstrated performances with
significantly increased accuracies (P < .05), and 4 of them
demonstrated performances with greater accuracy than the
algorithm. In the expert group, 2 endoscopists demonstrated
performances with significantly improved accuracies (E1,
P ¼ .01; E4, P ¼ .001), and 1 (E4) achieved higher accuracy
than the algorithm. In the NBI-trained expert group, 3
endoscopists (N-TE1, N-TE2, N-TE11) demonstrated per-
formances with significantly improved accuracies (P < .05).
Interestingly, 1 endoscopist (N-TE2) was already more ac-
curate than the algorithm without AI assistance.

AI assistance and endoscopic experience. The
optical-diagnosis performances of the novices, expert
endoscopists, and NBI-trained expert endoscopists were
73.8%, 83.8%, and 87.6%, respectively, and their diagnostic



Figure 2. Architecture of the CNNs for the classification of NBI of polyps searched based on the method of neural architecture
search. (A) Full architecture of CNNs searched by the proposed method, (B) architecture of normal cell, and (C) architecture of
a reduction cell.
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accuracy improved with AI assistance (85.6%, 89.0%,
90.2%, respectively, Figure 3). Without AI assistance (test
1), the novice group demonstrated a significantly lower
accuracy than both the experts (P ¼ .049) and the NBI-
trained experts (P ¼ .001). With AI assistance (test 2), the
accuracy of the novices significantly improved, and there
was no statistical difference when performances were
compared with those of the expert group (P ¼ .102)
(Supplementary Figure 4). A detailed results of sensitivity
and specificity were presented in Supplementary Figure 5.

AI assistance and diagnostic time. The average time
for the AI algorithm to diagnose each polyp was 0.01 sec-
ond, which is significantly shorter than the time taken by the
endoscopists (Table 3). Herein, we note that AI assistance
offered an interpretable explanation such that endoscopists
can diagnose faster. In particular, the diagnostic time per
polyp reduced from 4.44 to 3.68 seconds in the case of the
NBI-trained expert group (P ¼ .033).

Personality traits and acceptance of AI assis-
tance. The acceptance of AI assistance by the endoscopist
also forms an important factor in diagnosis. This accep-
tance factor can be reflected by the personality trait of the
grit. The traits of the grit are defined as the perseverance
and passion for long-term goals, and they reflect the ability
of an individual to sustain long-term efforts and overcome
obstacles in realizing goals.30 In our study, the mean
participant grit score was 3.56 (Table 4). Overall, we
observed a moderate correlation between grit and AI-
assisted diagnostic accuracy (r ¼ 0.51, P ¼ .015)
(Supplementary Figure 6). Conversely, there was no cor-
relation between grit and diagnostic accuracy without AI
assistance.
Discussion
In this study, we investigated the effect of AI assistance

on 22 endoscopists in accurately predicting the pathology of
polyp NBI. We found that AI assistance with an interpret-
able explanation could improve both the optical diagnostic
accuracy and diagnostic speed regardless of endoscopic



Table 1.The CNN Performance Comparison Between a Previous Method and Proposed Methods

Accuracy,
n (%)

Sensitivity,
n (%)

Specificity,
n (%)

Positive predictive
value, n (%)

Negative predictive
value, n (%)

Diagnostic
time (s)

Inception-v3 245/300 (81.67) 144/180 (80) 101/120 (84.17) 141/160 (88.34) 103/140 (73.72) 8.42/300
ENAS* 256/300 (85.33) 147/180 (81.67) 109/120 (90.83) 145/160 (90.83) 107/140 (76.76) 3.62/300
ENAS* þ augmentation 260/300 (86.7) 150/180 (83.3) 110/120 (91.7) 150/160 (93.8) 110/140 (78.6)

ENAS, efficient neural networks architecture search via parameter sharing.
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experience. The diagnostic accuracy increased maximally in
the novice group, and it was not significantly different from
that of the expert group. Herein, we note that AI assistance
can aid even well-trained expert endoscopists in increasing
their diagnostic accuracies and reduce the diagnosis dura-
tion. In this section, we discuss the results considering the
various aspects of the study.

In this study, we used NBI for polyp classifications. NBI
was acquired with the use of a standard colonoscope, and
not a magnifying endoscope or endocytoscope. Here, we
note that recently, CADx systems have demonstrated satis-
factory diagnostic capability in predicting the histology
based on images captured with a magnification endoscope
(�80) and endocytoscope (�500).22,31 However, these
Table 2.Diagnostic Accuracy Stratified Based on the Viewing C

Observer

Non-assisted (T1)

T1 vs
(P va

Accuracy

n Percent 95% CI

AI 260/300 86.7 (82.3–90.3)
Novice (n ¼ 7)

N1 236/300 78.7 (73.6–83.2) .00
N2 237/300 79.0 (73.9–83.5) .00
N3 245/300 81.7 (76.8–85.9) .07
N4 255/300 85.0 (80.4–88.8) .52
N5 226/300 75.3 (70.1–80.1) <.00
N6 143/300 47.7 (41.9–53.5) <.00
N7 207/300 69.0 (63.4–74.2) <.00

Expert endoscopist (n ¼ 4)
E1 232/300 77.3 (72.2–81.9) .00
E2 254/300 84.7 (80.1–88.6) .46
E3 265/300 88.3 (84.1–91.7) .51
E4 254/300 84.7 (80.1–88.6) .43

NBI-trained expert endoscopist (n ¼ 11)
N-TE1 258/300 86.0 (81.6–89.7) .80
N-TE2 264/300 88.0 (83.8–91.5) .59
N-TE3 267/300 89.0 (84.9–92.3) .36
N-TE4 278/300 92.7 (89.1–95.3) .01
N-TE5 269/300 89.7 (85.7–92.9) .22
N-TE6 264/300 88.0 (83.8–91.5) .61
N-TE7 270/300 90.0 (86–93.2) .18
N-TE8 263/300 87.7 (83.4–91.2) .71
N-TE9 256/300 85.3 (80.8–89.1) .53
N-TE10 250/300 83.3 (78.6–87.4) .21
N-TE11 252/300 84.0 (79.4–88) .33

CI, confidence interval; T1, test 1; T2, test 2.
advanced imaging modalities are not commonly used in
clinical practice. In our case, even without magnification, the
obtained accuracy was only slightly lower (86.7%) than that
of previous studies that used magnification (88.0%,
90.1%).22,31 Meanwhile, we note that although a large
number of adenomatous polyps exhibited high-grade
dysplasia (71/284, 25.0%) in a previous study,22 all
adenomatous polyps exhibited low-grade dysplasia in our
study. Herein, we note that diminutive colorectal polyps
smaller than 5 mm mostly exhibit low-grade dysplasia,
whereas high-grade dysplasia has been reported in only
0.3% to 1.2% of cases.5,32

Recent advances in AI technology have accelerated the
development of CADx14,17 toward the distinction between
ondition (Nonassisted vs AI-assisted)

AI
lue)

AI-assisted (T2)

T1 vs T2
(P value)

Accuracy

n Percent 95% CI

9 264/300 88.0 (83.8–91.5) <.0001
3 261/300 87.0 (82.7–90.6) .001
5 262/300 87.3 (83–90.9) .024
2 269/300 89.7 (85.7–92.9) .035
01 247/300 82.3 (77.5–86.5) .007
01 237/300 79.0 (73.9–83.5) <.0001
01 258/300 86.0 (81.6–89.7) <.0001

2 259/300 86.3 (81.9–90) .001
0 263/300 87.7 (83.4–91.2) .208
5 270/300 90.0 (86–93.2) .466
9 276/300 92.0 (88.3–94.8) .001

8 276/300 92.0 (88.3–94.8) .011
3 282/300 94.0 (90.7–96.4) .004
2 265/300 88.3 (84.1–91.7) .746
1 282/300 94.0 (90.7–96.4) .371
5 271/300 90.3 (86.4–93.4) .683
7 268/300 89.3 (85.3–92.6) .505
1 280/300 93.3 (89.9–95.9) .059
4 266/300 88.7 (84.5–92) .602
7 256/300 85.3 (80.8–89.1) 1.000
1 259/300 86.3 (81.9–90) .150
9 270/300 90.0 (86–93.2) .011



Table 3.Comparison of Average Diagnostic Times for Each
Polyp Image Between CNN and Endoscopists

Diagnostic time per polyp (s)

Nonassisted (T1) AI-assisted (T2) P value

CNN 0.01 0.01 1.000
Overall 3.92 3.37 .042

Novice 3.24 3.18 .866
Expert 3.67 2.84 .068
NBI-trained

expert
4.44 3.68 .033

T1, test 1; T2, test 2.
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adenomatous and hyperplastic colorectal polyps.21,22 Pre-
vious studies have reported on classification systems that
have demonstrated expert-endoscopist–level accuracy of
optical diagnosis.22,33 However, the effects of these models
applied to endoscopists are not well understood. Our study
is the first attempt to identify how the diagnostic capabil-
ities of endoscopists differ between both AI-unassisted (test
1) and AI-assisted diagnoses (test 2). Our study showed that
AI assistance augments the physician’s judgment, thereby
improving the accuracy of optical diagnosis and the short-
ening of the diagnostic time.

Unlike the general method of training standard CNN, we
used an ENAS, which is one of the AutoML methods.25 Pre-
vious CNN medical imaging studies had been selected and
trained the defined CNN models, such as inception-v3,27

which yielded high-performance outcomes in the ImageNet
competition.34 However, these CNN architectures performed
tasks on general datasets, and not on specific datasets, such
as the NBI polyp. Thus, we used the proposed method to
search the CNN architecture by training that was optimized
for polyp NBI. In addition, the proposed method is faster in
formulating a diagnosis compared with previous studies
given that it is based on a better graphics processing unit
performance, smaller batch size, and smaller training image
size. Accordingly, it is considered to be suitable for real-time
diagnosis. We also found that the diagnostic performances of
the ENAS with the augmentation techniques for the flat polyp
cases were improved compared with the single-ENAS method
in conjunction with the endoscopist diagnoses.35,36 Consid-
ering that AI did not recognize this type of polyp well in
previous studies,37 the use of the proposed methods
confirmed that the combination of various augmentation
techniques could compensate for the lack of training data and
improve the performance. As a result of this process, the loss
graph of the training and validation sets in Supplementary
Figure 7 indicates that the 2 decreasing loss patterns are
the same. Given that there is no significant difference be-
tween the 2 indicates that overfitting is minimized.

In the application of medical AI technology, it is impor-
tant that physicians can understand the AI results to accept
AI. Here, we mention that deep-learning methods are “black
boxes” because it is impossible to explain why the AI arrived
at a specific decision.38 In this context, we note that recently
AI explanation methods have been developed to enable
humans to comprehend how the AI predictions are
made.19,39 In this study, we presented the AI results to
physicians in the following manner: AI-predicted pathology
with confidence value and both original polyp NBI and
NBI with generated heatmaps using Grad-CAM methods.26

We visualized the highlights that overlaid the
polyp NBI for predicted evidence. This interpretable expla-
nation of AI results can aid the endoscopist to accept AI
assistance, thereby contributing to increased diagnostic
accuracy.

In the study, we divided the endoscopists into 3 groups,
novices, experts, and NBI-trained experts, based on their
skill. Novice users were gastroenterology fellows with no
experience in NBI polyp diagnosis. The mean durations (±
standard deviation) of colonoscopy experiences were 5.5 ±
3.1 years in the case of the expert group, and 13.0 ± 5.6
years in the case of the NBI-trained group. Both experts and
NBI-trained experts were board-certified gastroenterolo-
gists and they performed more than 600 colonoscopies per
year. Expert groups had various experiences with NBI, and 3
of them had minor experiences with NBI. By contrast, the
NBI-trained expert group participants were trained in op-
tical diagnosis using NBI for 1 year and group performance
of participating endoscopists met or surpassed the Preser-
vation and Incorporation of Valuable Endoscopic In-
novations threshold.

We found that AI assistance is most effective in aiding
novices rather than experts. All the novices demonstrated
significantly increased diagnostic accuracy, and their results
were not inferior to those of experts. It should be noted that
in previous studies, the “nonexpert” results showed marked
interobserver variability, and these nonexperts could not
achieve acceptable accuracy in the optical diagnosis of
diminutive polyps with NBI.40,41 To overcome this limita-
tion, many researchers have attempted to develop AI diag-
nostic algorithms that can allow nonexperts to demonstrate
improved accuracy of optical diagnosis as a clinical
tool.42–44 Our study demonstrates that AI assistance may aid
in augmenting the abilities of nonexperts with limited
training in optical diagnosis to take better decisions.

In our study, the 11 NBI-trained experts participated in a
training program for optical diagnosis using NBI from
September 2015 to September 2016.24 This NBI-trained
expert group demonstrated the highest accuracy of 87.6%,
which is thought to be attributed to the effects of training.
Even in the case of NBI-trained experts whose performance
was better than AI algorithms, the accuracy increased and
the diagnosis time reduced with AI assistance. These results
suggest that AI assistance can also be useful for experts in
actual clinical situations.

Grit is a positive, noncognitive personality trait charac-
terized by the ability to persevere during difficulties com-
bined with powerful motivation to achieve a goal.45 Grit has
been found to be a superior predictor of success in high-
achievement fields.29 Higher grit has been found to corre-
late with higher performance in medical school, whereas
lower grit has been found to correlate with increased sur-
gical residency training drop-out rates.46,47 Previous studies
have shown that doctors exhibit an average grit score in the



Figure 3. Improved accu-
racy of optical diagnosis
with AI assistance classi-
fied by the group.
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range of 3.5 to 3.7.30,45 In our case, the participating endo-
scopists exhibited an average grit score of 3.56. Our study
findings show that endoscopists with high grit scores could
flexibly accept AI assistance, thereby increasing the diag-
nostic accuracy. In this study, we found that high grit,
particularly in terms of the consistency of interest, corre-
lated with high accuracy, which translated to a passion to
achieve and maintain strong motivation for overcoming
Table 4.Mean Score for Grit (5-Scale) and Strength of Correlat
Coefficient)

Overall

Mean SD IQR

Grit score 3.561 0.47 3.22–3.92
Consistency of interest 3.386 0.59 3.00–3.83
Perseverance of effort 3.735 0.5 3.50–4.00

SD, standard deviation; IQR, interquartile range.
obstacles. This result indicates the possibility that certain
personality traits of the endoscopist can affect the accep-
tance of AI technology.

This study has several limitations. First, we developed
a CNN based on high-quality images. However, in clinical
practice, the acquired images may be of poor quality,
such as out-of-focus or blurred images. Second, this study
does not focus on real-time optical diagnoses. We
ion Between Optical Diagnostic Accuracy (r ¼ Correlation

Optical diagnostic accuracy

Nonassisted (T1) AI-assisted (T2)

Correlation, r P value Correlation, r P value

0.3 .1768 0.51 .0148
0.38 .0799 0.56 .0069
0.11 .6175 0.31 .1651
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considered only 2 in vitro tests to compare the perfor-
mances of endoscopists with and without AI assistance.
We cropped and resized images to fit the CNN’s input
size. These hand-crafted, extracted images could be
different from actual colonoscopy images. In actual co-
lonoscopy, the endoscopist could observe polyps at
various angles and in continuous frames to predict pa-
thology. Endoscopic video streams could be more useful
than still images.21 Third, our training and test datasets
consisted of tubular adenoma with low-grade and hy-
perplastic polyps. We excluded diminutive polyps with
serrated lesions, and other benign conditions, such as
inflammatory polyps or lymphoid follicles. Further
studies are needed on other types of colorectal polyps
with various pathological findings. Fourth, the confidence
value, the probabilistic diagnosis of CNN, is not always
reliable because the diagnosis is not based on the same
approach as that used for humans.38 Therefore, to solve
the uncertainty issue,43 the Bayesian deep-learning
method has been studied that can be trained with
weights of probability distribution rather than with the
use of fixed-weight CNN values.48 Finally, because Grad-
CAM is a technology that was applied independently on
the proposed CNN architecture and on the training
methods, the presented heatmap results were not stable
because the results were different at each CNN layer.

In conclusion, AI assistance is useful for the improve-
ment of the accuracy of the optical diagnosis of diminutive
polyps and for the achievement of shorter diagnostic times.
In particular, we found that AI assistance was most effec-
tive for novices because they could achieve accuracies
similar to those of experts without training or effort. In this
manner, by reducing the diagnostic-capability differences
between physicians, pathological examinations can be
replaced by accurate optical diagnoses with AI assistance
that can contribute to significant reductions of medical
costs.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2020.02.036.
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Supplementary Material
Dataset Acquisition and Augmentation
Methods
Dataset Acquisition

A dataset acquisition program was developed for region-
of-interest (ROI) analyses of polyp image acquisitions from
original polyp images. This program provides various
functionalities, including the ability to import images in a
folder, draw ROIs with the mouse, and save the coordinates
of the polyp in the image. The program was developed in
MATLAB (MATLAB R2017a; MathWorks Inc., Natick, MA), as
shown in Supplementary Figure 1. In the data acquisition
step, the NBI has a size of 1280 � 960 pixels (200%), and
the polyp region is cropped within a selected ROI.

Dataset Augmentation Techniques
As part of the training of the CNNs, the augmentation

technique is used to improve performance. In this experi-
ment, the number of training sets was increased 5 times
based on the application of the augmentation techniques,
and yielded the highest performance based on several ex-
periments. The applied methods were a combination of
linear transformations (zoom: 0.15, shear: 0.3, rotation: 60�)
and an elastic transformation1 (s: 12, random 3 � 3 grid)
using the software packages OpenCV (version 3.4.1) and
elasticdeform (version 0.4.6). The results of the augmenta-
tion techniques are shown in Supplementary Figure 2.

Description of CNN and Prediction
Analysis
Efficient Neural Architecture Search via
Parameter Sharing

Efficient neural architecture search via parameter sharing is
one of the AutoML methods that uses recurrent neural net-
works (RNN)2 and reinforcement learning (RL)3 methods to
determine the architecture of the deep-learning model. In this
case, the RNN that determines the architecture of the model is
called a controller, and the model created by the controller is
called a child network. The controller used the RL method to
yield a higher child network performance based on the accu-
racy of the generated child network. In turn, the child network
trained each sampled child network with a general image
training method and with the use of a training dataset.

The proposed method is the architecture searching
method and the procedure is as follows.

1. The controller RNN generates hyperparameters for the
architectural design of convolutional neural networks.

2. As the controller RNN constructs the architecture, it
calculates the accuracy of the validation set based on
training until the loss converges.

3. To maximize the expected validation accuracy of the
constructed architecture, a policy gradient method is

used to optimize the hyperparameters of the
controller RNN.

4. This process is repeated to search for the optimal
architecture design.

Specifically, this study used a micro search to design
small modules and then connected them to CNN.4 The
modules consisted of normal cells and reduction cells, and
these 2 modules formed the networks in a repeating
architecture.

In addition, 5 types of operations were determined
within the modules based on training, and the types were
(1) identity, (2) separable convolution with kernel sizes of
3 � 3 and 5 � 5, and (3) average pooling and max pooling
with a kernel size of 3 � 3. The hyperparameters used for
the training of the controller RNN and micro search were
determined based on experiments as follows. The RNN
controller learning rate was 0.003, the child learning rate
was 0.0005 to 0.05, the L2 regularization was 1e-4, and the
numbers of the child layer, branches, and child cells were 5,
5, and 15, respectively.

The hardware development environment included the
NVIDIA Titan V, graphics processing unit, and the software
was Python (version 3.4.2; Python Software Foundation,
Beaverton, OR), TensorFlow (version 1.11.0; Google,
Mountain View, CA). It was developed with reference to
https://github.com/melodyguan/enas/.

CNN Training
The training protocol of the model determined by the

searching method is as follows. The model was trained with
an epoch of 450 and with a batch size of 10. An Adam
optimizer5 was used with a learning rate of 0.0001. In
addition, a weighted cross-entropy method6 was used to
solve a class imbalance issue, and the ratio of the training
datasets was not precisely 1:1.

Grad-CAM as a Basis for Diagnosis
Grad-CAM is one of the explainable AI techniques that

presents the results of the CNN as a probabilistic repre-
sentation of a heatmap overlaid on an image.7 The closer the
color of the heatmap is to blue, the lower is the probability,
and the closer the color is to red, the higher is the proba-
bility. The results of the applied Grad-CAM are shown in
Supplementary Figure 3.

t-Stochastic Neighbor Embedding
t-Distributed stochastic neighbor embedding (t-SNE) is a

dimension reduction method, whereby high-dimensional
data are embedded as low-dimensional data and are visu-
alized.8 We defined the similarity between the data in a
high-dimensional space represented by probability values
and the similarity between the data in an embedding (low-
dimensional) space. Accordingly, the gradient descent was
used so that the difference between the 2 similarities was
small.
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In this study, features of the validation set were
extracted from the last layer of the trained CNN. The num-
ber of features was 1024, and the features of the last layer
reduced the dimension to 2, with a learning rate of 200, and
with 1000 iterations based on the use of the package scikit-
learn machine learning package (version 0.19.1; https://
scikit-learn.org). The results are shown in Supplementary
Figure 8.
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Supplementary Figure 1. Data acquisition program. The program provides functionalities for loading original polyp NBIs,
selection, and saving.
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Supplementary Figure 2. Applied augmentation techniques. (A) Augmentation results of hyperplastic polyp images, and
(B) augmentation results of adenomatous polyp images.

Supplementary Figure 3. Results of probabilistic diagnosis as a heatmap on polyp images using Grad-CAM.
(A) Heatmap results overlaid on hyperplastic polyp images. (B) Heatmap results on adenomatous polyp images.
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Supplementary Figure 4. Comparisons of the diagnostic accuracy outcomes according to endoscopic experiences in non-
assisted and AI-assisted conditions.

Supplementary Figure 5. Scatterplots of (A) sensitivity, and (B) specificity for each AI-assisted condition (y-axis) compared
with nonassisted condition (x-axis) for participating endoscopists. Results show that AI assistance increased specificity.
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Supplementary Figure 6. Scatter plot for AI-assisted optical diagnosis against grit score (r ¼ 0.51, P ¼ .015).

Supplementary Figure 7. Loss graph of training and validation sets.
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Supplementary Figure 8. Result following the application of t-stochastic neighbor embedding to NBI polyp images.
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Supplementary Table 2.Patient Information and Polyp Characteristics in the Validation Test Set (N ¼ 300)

Adenomatous polyp (n ¼ 180) Hyperplastic polyp (n ¼ 120) P

Sex .062
- Male 127 (70.6) 97 (80.8)
- Female 53 (29.4) 23 (19.2)

Age (mean ± SD) 60.0 ± 10.0 54.9 ± 9.9 .000
Location .000

- Ascending colon 61 (33.9) 26 (21.7)
- Transverse colon 61 (33.9) 15 (12.5)
- Descending colon 14 (7.8) 13 (10.8)
- Rectosigmoid colon 44 (24.4) 66 (55.0)

Using NF view .752
- without NF view 12 (6.7) 10 (8.3)
- with NF view 168 (93.3) 110 (91.7)

Gross .002
- IIa (flat) 131 (72.8) 106 (88.3)
- Is (sessile) 34 (18.9) 13 (10.8)
- Isp (subpedunculated) 15 (8.3) 1 (0.8)

NOTE. Values are n (%).
NF, near focus; SD, standard deviation.

Supplementary Table 1.Polyp Characteristics of Training Set (N ¼ 2150)

Adenomatous polyp (n ¼ 1100) Hyperplastic polyp (n ¼ 1050) P

Location < .0001
- Ascending colon 362 (32.9) 179 (17.0)
- Transverse colon 310 (28.2) 171 (16.3)
- Descending colon 119 (10.8) 55 (5.2)
- Rectosigmoid colon 309 (28.1) 645 (61.4)

Using NF view < .0001
- without NF view 96 (8.7) 171 (16.3)
- with NF view 1004 (91.3) 879 (83.7)

Gross < .0001
- IIa 499 (45.4) 894 (85.1)
- Is 505 (45.9) 152 (14.5)
- Isp 96 (8.7) 4 (0.4)

NOTE. Values are n (%).
NF, near focus.
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Supplementary Table 4.Comparison of the Diagnostic Accuracy According to Endoscopic Experiences in Nonassisted and
AI-assisted Cases

Nonassisted (T1) AI-assisted (T2) T1 vs T2

Accuracy (%) SE Accuracy (%) SE Difference Lower Upper SE P

Group
Novice 73.8 2.86 85.6 1.19 11.86 7.27 16.45 2.19 <.0001
Expert 83.8 3.78 89.0 1.57 5.25 �0.82 11.32 2.90 .0861
NBI-trained expert 87.6 2.28 90.2 0.95 2.55 �1.11 6.21 1.75 .1619

Overall 82.5 1.61 88.5 0.67 6.00 3.41 8.59 1.24 .0001

SE, standard error.

Supplementary Table 3.Baseline Characteristics of Participating Endoscopists (N ¼ 22)

n (%)

Sex
Male 4 (18.2)
Female 18 (81.8)

Colonoscopy experience (y)
<2 7 (31.8)
2–9 6 (27.3)
10–14 5 (22.7)
�15 4 (18.2)

Estimated cumulative colonoscopy volume
<1000 4 (18.2)
1000–2500 4 (18.2)
2500–4999 5 (22.7)
5000–9999 6 (27.3)
�10,000 3 (13.6)

Observed polyp with NBI mode in usual practice
Not at all 1 (4.5)
>25% 4 (18.2)
>50% 5 (22.7)
>75% 6 (27.3)
All 6 (27.3)

Usefulness of NBI mode for optical diagnosis
Not at all 0 (0.0)
>25% 3 (13.6)
>50% 7 (31.8)
>75% 7 (31.8)
All 5 (22.7)
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