
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3016734, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Exploring the structural and strategic
bases of autism spectrum disorders with
deep learning
FENGKAI KE1, SEUNG JIN CHOI2, YOUNG HO KANG3, KEUN-AH CHEON2*, AND SANG
WAN LEE4*
1Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, P.R.China
(e-mail: kfkhbut@163.com)
2Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Children’s Hospital, Institute of Behavioral Science in Medicine, Yonsei
University College of Medicine, Seoul, South Korea
3Brain and Cognitive Engineering Program, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea
4Brain and Cognitive Engineering Program, Department of Bio and Brain Engineering, Center for Neuroscience-inspired AI, KI for Health Science Technology,
KI for Artificial Intelligence, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea

Corresponding author: Keun-Ah Cheon (e-mail: KACHEON@yuhs.ac), Sang Wan Lee (e-mail: sangwan@kaist.ac.kr).

This work was supported in part by the Scientific and Technological Research of Education Department of Hubei Province under Grant
Q20181408, in part by the Scientific Research Foundation of Science and Technology Department of Hubei Province under Grant
2018CFB276, in part by the Doctor Launching Fund of Hubei University of Technology under Grant BSQD20160004, and in part by the
Hubei Chenguang Talented Youth Development Foundation (HBCG) under Grant 2017109. This work was also supported by Institute of
Information & Communications Technology Planning & Evaluation(IITP) grant funded by the Korea government (MSIT)
(No.2019-0-01371, Development of brain-inspired AI with human-like intelligence), Samsung Research Funding Center of Samsung
Electronics under Project Number SRFC-TC1603-06, Korea Health Technology R&D Project through the Korea Health Industry
Development Institute (KHIDI) grant funded by the Korea government (MOHW) (HI12C0021-A120029) and in part by National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A2B4006737).

ABSTRACT Deep learning models are applied in clinical research in order to diagnose disease. However,
diagnosing autism spectrum disorders (ASD) remains challenging due to its complex psychiatric symptoms
as well as a generally insufficient amount of neurobiological evidence. We investigated the structural and
strategic bases of ASD using 14 different types of models, including convolutional and recurrent neural
networks. Using an open source autism dataset consisting of more than 1000 MRI scan images and a high-
resolution structural MRI dataset, we demonstrated how deep neural networks could be used as tools for
diagnosing and analyzing psychiatric disorders. We trained 3D convolutional neural networks to visualize
combinations of brain regions, thus representing the most referred-to regions used by the model whilst
classifying the images. We also implemented recurrent neural networks to classify the sequence of brain
regions efficiently. We found emphatic structural and strategic evidence on which the model heavily relies
during the classification process. For instance, we observed that the structural and strategic evidence tends to
be associated with subcortical structures, including the basal ganglia (BG). Our work identifies the distinct
brain structures that characterize a complex psychiatric disorder while streamlining the deductive reasoning
that clinicians can use to ensure an economical and time-efficient diagnosis process.

INDEX TERMS Deep Learning, sMRI, Austism Spectrum Disorders, Neural Networks

I. INTRODUCTION

AUTISM spectrum disorders (ASD) is a term embodying
neurodevelopmental disorders characterized by per-

sistent insufficiencies in social communication as well as
restricted and repetitive behaviors, interests, or activities [1].
According to a report from the Centers for Disease Control
and Prevention (CDC) in 2018 [2], one out of 59 children
in the United States has ASD symptoms. In the Republic

of Korea, the prevalence of ASD is estimated to be 2.64%
among school-age children [3].

Studies using neuroimaging techniques, such as magnetic
resonance imaging (MRI) or positron emission tomogra-
phy (PET), have provided many insights into the neurode-
velopmental characteristics underlying ASD [4]–[8]. Most
findings from these imaging studies are based on a uni-
variate analytical approach assuming the independence of
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each voxel [9] [10]. In contrast to mass-univariate methods,
machine learning models can use multiple voxels as inputs,
making it possible to study high-level relationships between
different features. These models are capable of identifying
the differences between a disease and control group, while
suggesting a suitable diagnosis strategy for each subject
[11]. Machine learning models have been successful in
solving various disease classification problems in ailments
including Alzheimer’s disease [12]–[15], schizophrenia [16]
[17], attention deficit hyperactivity disorder [18] [19], and
other psychiatric diseases [20] [21].

II. RELATED WORK
Rapid advances in deep learning have allowed the integration
of various data, including data with different modalities [22]–
[27]. Several studies have demonstrated the utility of deep
learning in medical problems [28]. For example, a fusion
of latent feature representations extracted from MRI and
PET data has been used in diagnosing Alzheimer’s disease
[29] [30]. Deep learning has performed well in learning
complex patterns, such as functional connectivity, making it
potentially helpful for diagnosis purposes [31].

ASD is characterized by persistent deficits in social com-
munication and interaction as well as restricted and repetitive
patterns of behavior, interests, or activities. The causes of
ASD are still unknown, but some researchers hypothesize
that the structure of the brain contains relevant information
[32] [33]. The data consist of volumetric measures and the
structure of the cerebellar vermis [34], regional thicknesses
extracted from the surface-based morphometry [35], the
volumes of gray and white matter maps [36] [37], volumet-
ric and geometric features extracted from selected cortical
locations, and morphometric features of selected regions of
interest [38]. A few studies have reported a relatively high
accuracy, between 76% and 90%. However, these studies in-
volved performance measurement of classifiers conducted on
small datasets, usually consisting of less than 50 participants
[39]–[41]. Moreover, the body of research has yet to produce
robust algorithms or out-of-sample performance.

When these tests were implemented on a large-scale
dataset collected from different populations and places, their
performance significantly decreased. One study used MRI
samples from the Autism Brain Imaging Data Exchange
(ABIDE) to define the histogram of oriented gradients,
obtaining an accuracy of 60.1% [42]. In another study,
two different types of neural networks were used to pro-
cess MRI data. This study achieved an accuracy of 61.7%.
The models reportedly performed better on relatively large-
scale MRI datasets [43]. Weights from the convolution
neural networks (CNN) were replaced with weights from
the pre-trained sparse autoencoder network. In addition
to inadequate classification performance, the models carry
poor transparency. In other words, the factors affecting
the model’s decisions remain ambiguous whilst classifying
each subject. Such factors can be used as indices mea-

suring model suitability. After preprocessing 1113 sMRI
samples from the Human Connectome Project (HCP) data
set (http://www.humanconnectome.org/ for technical infor-
mation) and screening out sMRI data with similar age and
gender ratios in the ABIDE, we used an encoder to classify
subjects with autism [44] [45]. This model can predict the
neuroanatomical deviations associated with autism compared
to a control group [46].

In addition to the sMRI-based classification, other studies
also have used the fMRI data. Based on Pearson’s coefficient,
19900 Region of Interest (ROI) features were selected from
the CC200 functional parcellation atlas of the brain [47],
and an autoencoder was used to classify autism, with an
accuracy of 0.743. Similarly, by using the parcellation atlas
[48], the temporal features of each ROI in the rs-fMRI data
were calculated and fed into the 1D convolutional neural
network, leading to a classification accuracy of 81% for the
ABIDE-ETH1 dataset [49]. Another study employed a cross-
validation grid search method was used to compare multiple
classification models such as support vector machines, lo-
gistics and ridge regression. The classification accuracy was
71.98%. Researchers further analyzed the seven different
brain atlas CC400 to identify autism correlated and anti-
correlated region of interests in the brain [50].

Model comprehensibility is particularly crucial in diag-
nosing psychiatric diseases, especially when the causes of
the disease are not fully known. Finding solutions to these
fundamental issues is a necessity for enhancing both the
reliability of classification performance and interpretability
of the model’s decision.

III. EXPLORING THE STRUCTURAL AND STRATEGIC
BASES OF AUTISM SPECTRUM DISORDERS
To resolve these issues, we conducted large-scale simulations
comparing the classification performance of five different
categories of deep learning models, including convolutional
neural networks, recurrent neural networks, and spatial trans-
formation networks. We were able to visualize the results of
each model. The simulations were carried out on two differ-
ent neuroimaging datasets: one is from the Child Psychiatric
Clinic at Severance Hospital, Yonsei University College of
Medicine (YUM) which had a high-resolution structural MRI
and another is from the international Autism Brain Imaging
Data Exchange (ABIDE).

First, we carried out an extensive model comparison for
reliable performance evaluation between a number of clas-
sifiers using various network architectures. Second, we ex-
plored the structural bases of ASD by visualizing a combina-
tion of brain regions, which can be considered the bases of the
model’s classification decision. Further, we included invari-
ant classifiers in our study to effectively deal with variations
in size and translation. Our findings suggest the possibility
that ASD patients have distinctive structural signatures in
their brains. Last but not least, we used attention-based
recurrent neural networks to learn a sequence of the brain
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regions, leading to classification. This sequence provides a
better understanding of the background strategies used by the
models while classifying the data. Revealing such strategies
pointed to regions of the brain for assessment when making a
diagnosis. These strategies can make the diagnosis process
more economical and time-efficient by providing a useful
order of the regions associated with diseases. We observed
compelling brain regions for the model’s classification, par-
ticularly multiple subcortical structures, including the basal
ganglia. Overall, these results provide both structural and
strategic information for characterizing ASD, as shown in
Fig. 1.

FIGURE 1. Overall framework. Our framework is two-fold: one for learning to
classify ASD (corresponding to the section: Training various types of neural
networks for ASD classification); the other for visualizing the structural and
logical basis of classification (corresponding to the two sections: Identifying
brain structures contributing to the classification, Understanding the logic of
classification).

IV. METHODS
A. DATA AND PRE-PROCESSING
In our study, we used two MRI datasets for autism classifica-
tion research, the first collected by the Yonsei University Col-
lege of Medicine (YUM). The second dataset was obtained
from the Autism Brain Imaging Data Exchange (ABIDE)
website, which houses a large number of open-source MRIs
for autism research [51].

For the YUM dataset, according to the sample image qual-
ity, we selected 73 out of 84 samples, including 40 people
with high SCQ points and 33 people with low SCQ points.
All subjects gave informed consent, and the Institutional
Review Board of the Severance Hospital of Yonsei University
approved the study for research with human subjects. We
performed this study at the Yonsei University College of
Medicine. In addition, we confirm that all methods were
performed in accordance with the relevant guidelines and
regulations.

For the ABIDE dataset, after combining the ABIDE I
and ABIDE II databases and screening the MRI data for
suboptimal quality, there were 1,992 people in total, with 946
autism patients and 1,046 people as controls.

The ABIDE dataset is a combination of sets of MRI scans
taken independently by more than 24 organizations, leading
to inconsistency in MRI quality and dimensions. As a result,

the dataset required cautious preprocessing.
For the YUM dataset, the processing pipeline consists of

three steps: (A) transformation of the MRIs into the same
size (170×256×256); (B) resizing of each image to a smaller
size (85×128×128) for faster computation; and (C) normal-
ization of the voxel values to a range of [0,1].

The pre-processing method employed for the ABIDE
dataset differs from the YUM dataset. Because of the dissim-
ilar configuration and quality of each dataset, we employed
Statistical Parametric Mapping software (SPM8) to perform
the registration [52]. The ABIDE pre-processing pipeline
consisted of two steps: (A) non-linear spatial transformation
of the MRI to the Montreal Neurological Institute (MNI) T1
template [53]; and (B) normalization of the voxel value to a
range of [0,1]. In step (A), we used the default setting of the
bounding box, which was [-78, -112, -50] to [78, 76, 85], and
the voxel size, which is 2 mm×2 mm×2 mm, in the SPM8.
The size of the MRI after registration became 79×95×79.

B. MODELS
In this paper, we used five main model configurations for
classifying and visualizing the samples, as shown in Table
1. Some of them have several model subtypes. For example,
we can use the 2D CNN or 3D CNN to process 2D MRI or
3D MRI input.

For model type 1, there are two subtypes: 3D input+3D
CNN (1-1) and 3D input+2D CNN (1-2). We use the 3D
MRI scan as input and the traditional 2D and 3D CNN for
extracting the feature map and classification [26] [55].

We illustrate the architecture of model type 2 in Fig. 2A.
The models combine the use of STN into the traditional
CNN to look at the specific part of the MRI. There are
also four model subtypes, which are 2D input+3D CNN+2D
STN (2-1), 3D input+3D CNN+3D STN (2-2), 3D input+2D
CNN+3D STN (2-3), 2D input+3D CNN+2D STN (2-4).
Because we had to deal with the 3D input data, we modified
the original the STN model to the 3D version of the STN [54],
so-called 3D STN. That is, the 3D STN receives the three-
dimensional input, and the spatial transformation matrix τ
has been changed to 4×4, as follows

τ =


sx 0 0 tx
0 sy 0 ty
0 0 sz tz
0 0 0 1

 (1)

where sx, sy , sz are the scale factors for each dimension and
tx, ty , tz are the translations for each dimension.

We have depicted the architecture of model type 3 in Fig.
2B. There are two types of models: 3D input+2D CNN+3D
STN+RNN (3-1) and 3D input+3D CNN+3D STN+RNN
(3-2). The architecture for model type 4 is shown in Fig.
2C - Fig. 2D. There are two types of model: 2D input+2D
CNN+CAM (4-1) and 3D input+3D CNN+CAM (4-2). The
core idea of CAM is to use the global averaging pooling
(GAP) layer, F k =

∑
fk(x, y) for every (x, y) in order to

calculate the importance of each slice of the feature map from
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TABLE 1. Different Model Types

Type Model Model Subtype

1 3D input+2D/3D CNN 3D input+2D CNN (1-1)
3D input+3D CNN (1-2)

2 2D/3D input+2D/3D CNN+2D/3D STN

2D input+2D CNN+2D STN (2-1)
2D input+3D CNN+2D STN (2-2)
3D input+2D CNN+3D STN (2-3)
3D input+3D CNN+3D STN (2-4)

3 3D input+2D/3D CNN+3D STN+RNN 3D input+2D CNN+3D STN+RNN (3-1)
3D input+3D CNN+3D STN+RNN (3-2)

4 2D/3D input+2D/3D CNN+CAM 2D input+2D CNN+CAM (4-1)
3D input+3D CNN+CAM (4-2)

5 3D input+RAM

3D input+RAM+loc (5-1)
3D input+RAM+noloc (5-2)
3D input+RAM+loc+fc (5-3)
3D input+RAM+rand (5-4)

FIGURE 2. Network architectures for model type 2 to 5. The 3D cube and parallelogram represent the original MRI data and MRI slices, respectively. (A) Model
type 2. There are two kinds of MRI inputs separated by the dashed line and two methods of convolution. The cube in solid lines and dash lines is the feature map
extracted after 2D and 3D convolution layers, respectively. (B) Model type 3. The 3D STN here is slightly different from (A). For each time step in the RNN, the
previously hidden state h2 in the second layer becomes the input of the STN to output the spatial transformation matrix. Then the STN uses it to transform the
original 3D MRI image spatially [54]. (C) In model subtype 4-1, for each slice of the original MRI, their processing pipeline are the same and independent. The slice
is input into a 2D CNN and becomes the 3D feature map. Then we use the 2D GAP to process each slice of this 3D feature map and fully connected to a single unit.
Then all these single units from each slice are fully connected to the last layer for classification. (D) In model subtype 4-2, the MRI is fed into the 3D CNN, and we
use 3D GAP to process each cube after the convolution. (E) Model type 5. For each time step of the RNN, the previous hidden state is fed into an FC layer, called
the location network, to output the attention location. We use this location to extract the cubic patch, which is called the glimpse network. Then we use the FC layer
to process the location and cubic patch to get location and glimpse features respectively and combine them.

the last convolution layer before creating a heat map for a
given image using

Mc(x, y) =
∑
k

wc
kfk(x, y) (2)

where c stands for class, fk(x, y) is the activation value of kth

unit in the last convolution layer at the specific point (x, y),
wc

k stands for the weights of the FC layer that connects the
unit in the GAP layer with the kth unit in the output layer
[56]. Because we used (2) for 2D images, we can call the
(2) the 2D GAP. For 2D input+2D CNN+CAM (4-1), we use
the 2D GAP layer for the feature map of each slice’s last
convolution layer in the MRI image F k

ij =
∑
fki (x, y) for

every (x, y) and the (2) has been changed to

Mi,c(x, y) =
∑
k

wc
iw

c
ikf

k
i (x, y) (3)

where i is the ith MRI slice, and wc
k and wc

ik stands for the
weights in the last two FC layers. The remaining symbols
are the same as in (2). For 3D input+3D CNN+CAM (4-2),
only the feature map’s dimension after convolution has been
changed to 4-dimensional, so (2) becomes

Mc(x, y, z) =
∑
k

wc
kfk(x, y, z) (4)

where fk(x, y, z) is the feature value of kth unit in the last
convolution layer at the specific point (x, y, z).

For model type 5, we show the architecture in Fig. 2E.
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We change the traditional recurrent attention model from 2-
dimensional image input to 3-dimensional MRI input [57].
We set the center of the MRI image to be the starting point
of the RAM model. Initially, RAM used the last hidden state
of the RNN for classification and did not have the location
constraint in the cost function. From the experimental results,
the location network inside the RAM always outputs the
coordinates near the corner of the MRI, which means it
converges to the local minima quickly. Thus, we added a
constraint function (5) into the cost function in order to assist
the RAM in learning more useful information and reaching
the global optimum.

f(x, y, z) =

{
0 0.2 < (x, y, z) < 0.8

C otherwise
(5)

where C is a constant value. The location (x, y, z) in the
image has been normalized to the range of [0,1], with (0,0,0)
being the top left corner of the image and (1,1,1) being the
bottom right corner of the image. The equation above forces
the RAM to focus on the central part of the brain. If not, it
will be challenged by a constant value, C.

C. IMPLEMENTATION DETAILS
For training and testing data, we separated the training and
testing data to be 80% and 20% of the original database. We
made the percentage of patients with autism in the training
data the same as in the original database. For each type of
model, we used the 10-fold cross-validation method.

For hardware configuration, we primarily used an Intel
Core i76700 CPU @ 3.40GHz×8 processor and a TITAN
Xp/PCIe/SSE2 graphics processing unit.

We used the network architectures shown in Table 2.
2DCNN(fh/fw, ks, s) is the abstraction of the 2-

dimensional convolution layer with fh number of filters for
the YUM dataset and fw for the ABIDE dataset, ks is the
kernel size, and s is the stride. If fw is not specified, it means
the YUM and the ABIDE datasets share the same number of
filters. 3DCNN(f, ks, s) follows a similar definition.

2DMP (ps, s) is the abstraction of the 2-dimensional
max-pooling layers withpool size and stride. 3DMP (ps, s)
holds a similar definition.
BATCH() is the abstraction of batch normalization,

while DROP (p) is the abstraction of the dropout layer with
p probability. FC(k) is the abstraction of a fully connected
layer with a k output unit. RNN(k) is the abstraction of the
recurrent neural network with k output unit, 2DGAP () is
the abstraction of the global averaging pooling layer, so as
2DGAP () for different dimensions.

For model type 1, the 3D input+2D CNN (1-1) and 3D
input+3D CNN (1-2) models are shown in Table 2.

For model type 2, the 2D input+2D CNN+2D STN (2-1),
2D input+3D CNN+2D STN (2-2), 3D input+2D CNN+3D
STN (2-3), and 2D input+3D CNN+2D STN (2-4) subtypes
of the model are shown in Table 2. N ×{2DSTN()} stands
for concatenating N slice of the transformed MRI image

along the first dimension after using the 2D STN model.
For model type 3, the 3D input+2D CNN+3D STN+RNN

(3-1), 3D input, 3D CNN+3D STN+RNN (3-2) are shown
in Table 2. We used the RNN1(128) and RNN2(128) to
represent the two-layer RNN, the layers with > superscript
are used recurrently in RNN.

For model type 4, the 2D input+2D CNN+CAM (4-1) and
3D input+3D CNN+CAM (4-2) are shown in Table 2, where
the > superscript indicates that these layers are used for each
slice of the MRI image repeatedly and independently. We
used the central part of the original images as an input for
the models.

Model type 5, it is rather awkward to summarize simply
using a table. We give the implementation details of each
network as described in [10]. At each time step, the glimpse
network extracts three cubic patches inside the MRI image,
with the size of the first cubic patch being 4× 4× 4, and each
successive patch having twice the width, height, and depth of
the previous. After extracting and resizing them to the same
size, we flattened the three cubic patches and inputted them
into the fully connected layer with 128 units. The location
network takes the location coordinate as input to the fully
connected layer with 128 units. We then concatenated the
glimpse feature from the glimpse network and the location
feature from the location network into the combined feature,
inserting them into the RNN with 256 units. After eight-time
steps or glimpses, the hidden states of the RNN were used
for classification. For 3D input+RAM+loc (5-1), the location
constraint cost function is adopted inside the model. For 3D
input+RAM+noloc (5-2), no location constraint cost function
is used inside the model. For 3D input+RAM+loc+fc (5-
3), the location constraint cost function is exploited inside
the model and uses all the hidden states information for
classification, while omitting the others. We set the center of
the MRI image to be the starting location of the RAM model
(5-1) to (5-3). For 3D input+RAM+rand (5-4), the location
network of a Gaussian distribution function centered at 0
is replaced with a 0.6 standard deviation within the model.
We found that, even with the RAM+noloc model, we could
still reach a relatively high accuracy as RAM+loc, implying
that the attention regions after the first time step of RAM are
meaningless.

D. DATA AVAILABILITY

The ABIDE dataset analyzed during the current study is
publicly available on http://fcon_1000.projects.nitrc.org/indi/
abide/abide_II.html. Moreover, the YUM dataset that sup-
ports the findings of this study are available from Severance
Children’s Hospital, the Institute of Behavioral Science in
Medicine, Yonsei University College of Medicine. However,
restrictions apply to the availability of these data, which
were used under license for the current study, and hence not
publicly available.
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TABLE 2. The architectures of different model subtypes for YUM/ABIDE datasets, each column represents a model whose architecture is arranged from top to
bottom in the order of rows

Model Subtypes
1-1 1-2 2-1 2-2 2-3 2-4 3-1 3-2 4-1 4-2
2DCNN(128/256,3,1) 3DCNN(32,3,1) N×{2DSTN()} N×{2DSTN()} 3DSTN() 3DSTN() 3DSTN()> 3DSTN()> 2DCNN(64,3,1)> 3DCNN(32/16,3,1)>

2DMP(2,2) 3DMP(2,2) 2DCNN(16,3,1) 3DCNN(16,3,1) 2DCNN(16,3,1) 3DCNN(16,3,1) 2DCNN(16,3,1)> 3DCNN(32,3,1)> 3DMP(2,2)> 3DMP(2,2)
2DCNN(128/256,3,1) 3DCNN(128,3,1) 2DCNN(16,3,1) 3DMP(2,2) 2DCNN(16,3,1) 3DMP(2.2) 2DCNN(16,3,1)> 3DMP(2,2)> 2DCNN(64,3,1)> 3DCNN(128/64,3,1)
2DMP(2,2) 3DMP(2,2) FC(1024) 3DCNN(16,3,1) FC(1024) 3DCNN(16,3,1) RNN1 (128) 3DCNN(16/64,3,1)> 2DMP(2,2)> 3DMP(2,2)
2DCNN(64/128,3,1) 3DCNN(64,3,1) FC(2) 3DMP(2,2) FC(2) 3DMP(2,2) RNN2 (128) 3DMP(2,2)> 2DCNN(32,3,1)> 3DCNN(32,3,1)
2DMP(2,2) 3DMP(2,2) FC(1024) FC(1024) FC(1024) RNN1 (128) 2DGAP()> 3DMP(2,2)
DROP(0.2) DROP(0.2) FC(2) FC(2) FC(2) RNN2 (128) FC(1)> 3DGAP()
FC(1024) FC(1024) FC(1024) FC(2) DROP(0.2)
DROP(0.2) DROP(0.2) FC(2) FC(2)
FC(2) FC(2)

TABLE 3. The highlighted regions and MNI coordinates of 2D CAM

Slice p-valuea Original Coordinates MNI Coordinates Brain Region

#74

0.41 [134, 170, 74] [6,25,9] [Genu of Corpus Callosum Right]
0.70 [168, 138, 74] [35,-3,6] [External Capsule Right]
0.98 [118, 106, 74] [-9,-30,2] [Thalamus Left]
0.08 [136, 170, 74] [5,-45,0] [Cerebellum Right]

#78

0.01 [134, 168, 78] [6,22,13] [Lateral Ventricle Frontal Right]
0.05 [134, 120, 78] [5,-18,7] [Thalamus Right]
0.91 [166, 106, 78] [32,-31,6] [Retrolenticular Part of Internal Capsule Right]
2.78e-04 [120, 104, 78] [-7,-32,5] [Thalamus Left]

#104
0.61 [120, 136, 104] [-7,-8,35] [Cingulum Left]
2.76e-05 [88, 104, 104] [-35,-35,31] [Superior Longitudinal Fasciculus Left]
0.02 [136, 104, 104] [6,-35,31] [Posterior Cingulate Gyrus Right]

aThe p-value is calculated by t-test of the values between all the samples in the autism group and the control group at the local maximum point

TABLE 4. Performance comparison of various types of models on YUM and
ABIDE datasets

Type Model Subtype YUM(µ,σ) ABIDE(µ,σ)
1-1 3D input+2DCNN (0.89,0.04) (0.61,0.01)
1-2 3D input+3DCNN (0.88,0.05) (0.64,0.01)
2-1 2D input+2DCNN+2DSTN (0.87,0.03) (0.59,0.01)
2-2 2D input+3DCNN+2DSTN (0.84,0.04) N/Ab

2-3 3D input+2DCNN+3DSTN (0.82,0.04) (0.57,0.03)
2-4 3D input+3DCNN+3DSTN (0.85,0.05) (0.60,0.01)
3-1 3D input+2DCNN+3DSTN+RNN (0.82,0.05) (0.55,0.01)
3-2 3D input+3DCNN+3DSTN+RNN (0.86,0.04) (0.56,0.02)
4-1 2D input+2DCNN+CAM (0.84,0.06) N/Ac

4-2 3D input+3DCNN+CAM (0.86,0.03) (0.56,0.01)
5-1 3D input+RAM+loc (0.87,0.03) (0.58,0.00)
5-2 3D input+RAM+noloc (0.88,0.01) (0.58,0.00)
5-3 3D input+RAM+loc+fc (0.90,0.03) (0.59,0.00)
5-4 3D input+RAM+rand (0.86,0.03) (0.57,0.00)
b,cLearning failed (classification accuracy below 0.5)

TABLE 5. Demographic & Clinical Characteristics of YUM Participants

Phenotypic index SCQ<15 (n=35) SCQ≥15 (n=49) p-valued

Male 29 (38.9%) 37 (44.4%) N/Af

Female 6 (61.1%) 12 (55.6%) N/Ag

Age 29.4 ± 11.6d 30.1 ± 5.3 0.52
SCQ 10.3 ± 3.3 20.12 ± 3.7 <0.01
SMS 65.2 ± 14.3 52.8 ± 13.0 <0.01
dValues are mean(µ)± standard deviation(σ)
eChi-square for categorical variable and independent t-test for continu-
ous variable
f,gNo need to calculate

TABLE 6. Demographic & Clinical Characteristics of ABIDE Participants

Phenotypic index Autism (n=521) Control (n=593)
Male 444 (51.9%) 412 (48.1%)
Female 77 (29.8%) 181 (70.2%)
Age 29.4 ± 11.6 30.1 ± 5.3
FIQ N/Ah N/Ai

h,iDue to missing values

V. RESULTS
The crossed-out cells refer to simulation conditions that
cannot be run on a standard GPU server due to tremendously
high computation costs. 3D and 2D input: both a whole and a
single slice of the given MRI image were given as input to the
classifier, respectively. CNN: a convolutional neural network,
STN: a spatial transformer network, RNN: a recurrent neural
network, CAM: a class activation mapping, RAM: a recurrent
attention model, loc: a local constraint where an input space
was confined to the brain area for the sake of efficiency of
learning, noloc: a local constraint was not applied. fc: a fully
connected network, rand: random location in each step of
RAM. Full details of each model are found in the methods
section.

A. TRAINING VARIOUS TYPES OF NEURAL NETWORKS
FOR ASD CLASSIFICATION
We ran large-scale simulations to compare the performance
of 14 unique versions of models in five different cate-
gories. We employed various types of classification tech-
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FIGURE 3. Test accuracy of models as a function of training steps. The test
accuracy was computed using 10-fold cross validation on the (A) the YUM and
(B) the ABIDE, respectively. The names of the models are based on Table 4.
For example, RAM+fc refers to the model 5-3 in Table 4. AE+CNN refers to the
auto-encoder+CNN model used in [42], and the 50% horizontal line refers to a
chance level. The mean test accuracy was recorded every 3000 and 5000
training steps. The shaded area represents a 95% confidence interval.

niques: (A) an invariant method (the Convolution Neural
Network (CNN)); (B) a feature learning method (the Spatial
Transformer Network (STN)); (C) a feature visualization
method (the Classification Activation Mapping(CAM)); (D)
a sequence learning model (the Recurrent Neural Network
(RNN)); (E) a sequential feature learning model (the Re-
current Attention Model (RAM)); and (6) a generic class of
neural networks (the Fully-Connected Network (FC)).

Table 4 shows the details of each combination and the
corresponding test accuracy during 10-fold cross-validation
(CV). The first four categories are based on an invariant
method (CNN) combined with various feature visualization
techniques (STN and CAM), whereas the fifth type is based
on a sequence learning model (RAM).

The YUM sample consists of 84 subjects (3yr-11yr) with
MRI and Social Communication Questionnaire (SCQ) data
(see Table 5). Two pediatric psychiatrists at Yonsei Univer-
sity Severance Hospital diagnosed the children as ASD based
on DSM-V (see Methods for complete details).

We divided the data into two groups: low and high SCQ,
with an SCQ score of 15 set as the threshold (Table 5).
The ABIDE dataset is an open-source MRI data repository
for autism research (see Methods for more details). The
classification accuracy as a function of training epochs is

shown in Fig. 3.
We found that the 2D/3D CNN and the RAM performed

the best for the YUM dataset, whereas a simple 3D CNN
performed the best for the ABIDE dataset (see Fig. 3 and
Table 4). Note that the 3D CNN model outperforms the
model reported in the previous study [42].

FIGURE 4. Visualization of the features learned by spatial transformer
networks. A comparison of slices of the original and the transformed MRI by
STN for model type 2 and 3. Images in the first row and the second row are
the slices of an original MRI and transformed version, respectively. Note that
during training, the STN learned that in order to improve classification
accuracy, it would be best to crop the middle cube and resize it to the original
size 256×256×256. We selected four representative slices of the MRI. The
number on top of each image represents the slice number (z-axis).

FIGURE 5. Visualization of the feature learned by class activation mapping.
The heat maps generated by the CAM and the corresponding local maxima
(red dots) for model 4-1 are superimposed on an input brain structure image.
Note that to improve computational efficiency and preclude the adverse
boundary effect of the model’s convolution kernels on CAM results, the results
were confined to the region where the brain images are located. To ensure the
reliability of the simulation, we acquired the CAM results by running ten
cross-validation experiments. For (B), the local maxima are discovered within
ten voxels. Refer to Table 3 for the full list of highlighted regions and
corresponding MNI coordinates.

B. TRAINING VARIOUS TYPES OF NEURAL NETWORKS
FOR ASD CLASSIFICATION
In order to examine which set of input features contributed
significantly to the models while categorizing the subjects,
we implemented two types of models, each with different
characteristics. The first approach was to optimize a linear
transformation of input images for classification. We trained
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the STN on the YUM dataset, a neural network capable of
learning an optimal affine transformation of the input image
for use in the classification task (refer to model types 2 and
3 in Table 4). The trained STN showed that the optimal
input transformation involves cropping the central part of the
original 3-dimensional MRI images and then enlarging it to
the size of the original image (Fig. 4). This finding suggests
that the subcortical structure of the brain might be influential
in classification. For the rest of the cases in types 2 and 3, the
STN did not learn any meaningful input transformation (data
not shown).

The second approach involves training an invariant classi-
fier, such as the convolutional neural networks (CNN) before
visualizing the input features that contribute to the model’s
meaningful classification. We adopted the class activation
mapping (CAM) algorithm, which distinguishes a group of
informative features from others in the given input. This
algorithm estimates the degree of each feature’s contribution
to the classification (refer to the model type 4 in Table 4). In
our work, we have implemented the CAM to create a heat
map representing the extent to which the corresponding pixel
value contributes to the CNN’s classification. We stacked an
input image for which the model makes an accurate predic-
tion and its corresponding heat map to visually highlight a
particular region of the image that contributes significantly
to the model’s classification. True positive data are explicitly
selected as inputs for the CAM. The heat maps are generated
by combining every output of each CAM result for each sam-
ple corresponding to the model (4-1) (Fig. 5). Interestingly,
local maxima were found in subcortical areas, including the
head and the tail of the caudate nucleus (slice #78). A few
local maxima also were found in the cortical area, includ-
ing insular and inferior frontal gyrus (slice #74). Another
interesting observation is that the local maxima also includes
brain structures with heavy connections, such as claustrum
that connects subcortical to cortical areas (slice #74) and
corpus callosum that connects the two hemispheres (slice
#104). To prevent boundary effect misinterpretations of the
model’s convolution kernels on CAM results, we excluded
the top and bottom eight slides from analysis. Note that most
of these brain regions are implicated in decision making,
learning, and inhibitory control. One interesting possibility
is that these structural differences can contribute to atypical
behavior in people with autism spectrum disorders. Note that
unlike model (4-1), model (4-2) seems to suffer from an
overfitting issue. This issue culminated in less reliable CAM
results, which do not warrant discussion. We were not able
to apply the CAM to the ABIDE dataset due to impaired
visualization of the classification performance, signifying
that accuracy did not exceed the chance level.

C. UNDERSTANDING THE STRATEGY BEHIND THE
DECISION MAKING
The models that belong to the first four types (types 1 to
4) adhere to single-shot classification, directly predicting the
class label for the entire input image. Although the CAM

FIGURE 6. Test accuracy for recurrent attention models (RAM). Test accuracy
as a function of training epochs for (a) the YUM and (b) the ABIDE. The model
RAM+fc (5-3) refers to the model 3D input+RAM+loc+fc (5-3) (Table 4). The
test accuracy was measured over 10-fold cross validation. The average test
accuracy, indicated by colored dots, was recorded every 3k and 5k training
steps for the YUM and the ABIDE, respectively. The training continued until
reaching maximum 100k steps. The shaded area represents 95% confidence
interval.

has remarkable ability in visualizing a correlative basis,
it lacks the capability to describe causalities between the
features of the input image data. In order to discover the
optimal strategies to use for accurate classification, we used
a recurrent attention model that learns a sequence of voxels
(partial brain regions) that the model needs to consider during
classification. An optimized sequence can be considered as
a set of aptly ordered readouts of brain structures, which
ultimately serve as an effective guide for classifying the data.
This approach corresponds to the models belonging to type
5.

All of the type-5 models rapidly identified the optimal in-
put sequences for classification and exceeded 70% accuracy
within the first 150K training steps (Fig. 6). For both datasets,
a successfully trained model shows a relatively stronger
tendency to identify the subcortical structure, including BG
(Fig. 7). To formally quantify this effect, we computed the
ratio of overlap between the model’s attention boxes and
basal ganglia (BG) (Fig. 8).

VI. DISCUSSION
We investigated how models comprised of deep neural
networks can be applied to identifying individuals with a
complex psychiatric disorder such as ASD. The overall

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3016734, IEEE Access

FengKai Ke et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Visualization of logics of classification learned by recurrent attention model (RAM). Shown are examples of sequences of brain areas to which the RAM
(model subtype: 5-3) attended for classification; (A) the YUM and (B) the ABIDE. The RAM model outputs a classification label after taking each partial 3D image in
sequence. The number above each image denotes the slice number.A set of three yellow rectangles indicates a middle slice of the 3D attention box (cubic). (C)
Three dimensional view of the attention boxes (A), color-coded by the sequence indices.

FIGURE 8. Importance of the subcortical structure for ASD classification.
Shown is the ratio of overlaps between attention boxes of the recurrent
attention model and eight regions of subcortical nuclei, including Putamen
(Pu), Caudate (Ca), Nucleus Acumbens (NAC), Globus Pallidus internal (GPi),
Globus Pallidus external (GPe), Substantia Nigra compacta (SNc), Substantia
Nigra reticulata (SNr), Subthalamic Nucleus(STH). We used a binarized mask
extracted from a probabilistic subcortical nuclei mask with the threshold
probability 0.5 [58]. The information of attention boxes was extracted from the
recurrent attention model trained on the YUM. The blue and red bar refers to
the low (LSCQ) and the high SCQ group (HSCQ), respectively. The yellow bar
refers to the case with random sampling. The error bar represents 95%
confidence interval. The asterisk indicates statistical significance (p<0.05;
paired t-test between LSCQ/HSCQ and Rand).

architecture is summarized in Fig. 1. We primarily used the
CNN and RNN as analysis and diagnosis tools, building them
with various architectures. We measured the performance of

every model on classification tasks, with each task using a
different MRI dataset.

Unlike conventional approaches that extract morpholog-
ical features using traditional algorithms, we directly fitted
neural networks to the original MRI voxel data, finding the
structural difference between the autism and control groups.
Our end-to-end training regime does not require extraction of
human morphological feature information, reducing the risk
of missing information and causing errors in the extraction
process.

Note that this paper aims not only to reliably enhance
classification accuracy, but also and more importantly, to
explore structural and strategic ASD evidence. We achieve
this goal by using a relatively large sample size and by
exploring a variety of different model versions, including
2D/3D CNN, STN, and RAM. For example, RAM provides
the logic of classification (Fig. 6); however, the ABIDE
dataset’s test accuracy is slightly lower than the best version.
There are several reasons why it is challenging for YUM and
ABIDE to achieve consistent accuracy:

• Data variability: ABIDE is a collection of data from
more than 20 institutions, each with different scanners,
scanning protocols, and configuration parameters, mak-
ing image features very different from those included in
the YUM data. Transferring ABIDE data to the MNI152
standard template unavoidably caused image variability.
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On the other hand, the YUM data set had relatively
smaller variability because it was collected by the same
facility. This fact might explain why the RAM showed
strong performance for the YUM in comparison to the
versions based on the invariant method, such as 2D or
3D CNN.

• Sample size: The sample size of ABIDE involves more
than 1000 images, whereas the YUM contains only 84.
It is generally known that CNN models show reliable
performance when the sample size is sufficiently large
(ABIDE). However, attention-based models, such as
RAM, hold an advantage when the sample size is very
small (YUM).

• Structural heterogeneity: ABIDE includes a very broad
age range for patients with autism, implying substan-
tially higher heterogeneity than YUM (refer to both
Table 5 and Table 6).

• Spatial resolution: The YUM consists of high resolution
sMRI. The spatial resolution of YUM is higher than that
of ABIDE.

• Class labeling: The method for labeling the ABIDE data
differs slightly from that of the YUM data, which relies
on the SCQ (Social Communication Questionnaire) in-
dex.

We built the CAM and a diagnosis sequence generator on
top of the CNNs and the RNNs, respectively. The CAM
numerates the contribution degree of each input. In other
words, the algorithm computes a value that represents how
often and how strongly the model refers to a particular feature
during the classification tasks. Psychiatric physicians can
use this type of analysis tool to identify significant brain
regions during the diagnosis process. We also have run both
the grad-CAM and the guided grad-CAM on our dataset.
Despite much effort to fine-tune these models, visualization
results are slightly noisier and less reliable than those done
with CAM. The input of 3D CAM and 2D CAM differ
due to differences in structure, 3D volume and 2D slice,
respectively. This variance also explains why 3D and 2D
CAM offer different results in some areas. That being said,
based on the overall statistical analyses, we found that the
results from these two models consistently overlapped in the
thalamus, caudate nucleus, claustrum, and other subcortical
tissue areas. Further, applying the RNN generates an opti-
mized sequence of the brain regions, which can serve as
a remarkable index for clinicians. The generator provides
rigorously ordered brain regions to aid in diagnosis. Such
structural and strategic clinical models may be state-of-the-
art indicators of ASD. Using these models in clinical settings
may positively impact individual patients while increasing
efficiency and economic benefits for the community at large.

The major regions in the classification were subcortical
structures, including the BG. The BG, which itself consists of
the striatum, caudate nucleus, globus pallidus, and putamen,
is a group of subcortical structures involved in motor function
as well as learning and memory. BG is suspected to con-

tribute to repetitive and stereotyped behaviors, which is a core
symptom domain of autism spectrum disorder. Despite the
limited implications of the BG’s role in autistic symptoms,
there is little evidence from previous high-resolution MRI
(≥3T) studies. Our results (Fig. 8) strongly support the idea
that the BG area could be a potential biomarker of autism.

To the best of our knowledge, Ghiassian and Sen’s papers
are the only two demonstrations using automated learn-
ing methods to classify the autism patient using extensive
databases. There are a few differences between our model
and the models used in previous studies. Firstly, Ghiassian’s
study relies on a hand-crafted histogram of oriented gradi-
ents, which may be prone to subjective bias. In contrast,
we employed an end-to-end training regime for classifica-
tion. Secondly, unlike Sen’s study, our study adopted auto-
encoders for data reconstruction. We were able to avoid
weights transfer, which usually is used in the classification
task. Thus, the filter number does not necessarily match the
number of units in the hidden layer of the sparse autoencoder.
Third, we used a 3D-CNN that learns the complex spatial
patterns of features. This setting reflects our perspective on
a volume or thickness of gray and white matter such that
they can be good indicators of ASD. Note that our model
outperforms the 2D-CNN by 2.8% in overall accuracy.

The reported classification accuracy may be considered
inadequate to reach the level for clinical utility. Despite this
technical insufficiency, our study provides a useful protocol
for visualizing elements with neural networks learning from
the data, as well as perceiving their relationships. These
findings will allow profound clinical insights into ASD diag-
nosis. Our study blazes a trail in discovering structural and
strategic evidence for acknowledging complex psychiatric
symptoms, thereby guiding clinicians in refining currently-
available diagnostic tools.
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