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Abstract
Using a machine learning method, this study aimed to identify unique causal networks of genes associated with bone, brain, 
and lung metastasis of breast cancer. Bayesian network analysis identified differentially expressed genes in primary breast 
cancer tissues, in bone, brain, and lung breast cancer metastatic tissues, and the clinicopathological features of patients 
obtained from the Gene Expression Omnibus microarray datasets. We evaluated the causal Bayesian networks of breast 
metastasis to distant sites (bone, brain, or lung) by (i) measuring how well the structures of each specific type of breast 
cancer metastasis fit the data, (ii) comparing the structures with known experimental evidence, and (iii) reporting predic-
tive capabilities of the structures. We report for the first time that the molecular gene signatures are specific to the different 
types of breast cancer metastasis. Several genes, including CHPF, ARC, ANGPTL4, NR2E1, SH2D1A, CTSW, POLR2J4, 
SPTLC1, ILK, ALDH3B1, PDE6A, SCTR, ADM, HEY1, KCNF1, and UVRAG, were found to be predictors of the risk for 
site-specific metastasis of breast cancer. Expression of POLR2JA, SPTLC1, ILK, ALDH3B1, and the estrogen receptor was 
significantly associated with breast cancer bone metastasis. Expression of PDE6A and NR2E1 was causally linked to breast 
cancer brain metastasis. Expression of HEY1, KCNF1, UVRAG, and the estrogen and progesterone receptors was strongly 
associated with breast cancer lung metastasis. The causal Bayesian network structures of these genes identify potential 
interactions among the genes in distant metastases of breast cancer, including to the bone, brain, and lung, and may serve as 
target candidates for treatment of breast cancer metastasis.
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Introduction

Breast cancer is the most common cancer and the second 
leading cause of cancer-related death in women worldwide 
[1, 2]. Significant improvements in the diagnosis, treatment, 
and prevention of breast cancer have led to decreased mortal-
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now considered to be a manageable disease [2, 3]. Although 
more than 90% of patients with breast cancer do not have 
metastasis at the time of diagnosis, about 6% of patients with 
breast cancer are diagnosed with metastasis [4]. The bone, 
followed by the lung, brain, and liver, are the most common 
organs associated with breast cancer metastasis [4, 5]. The 
mortality and morbidity rates for breast cancer metastasis are 
70% to 90% [6, 7]. The median survival of patients with non-
metastatic breast cancer is > 85 months (~ 7 years) regardless 
of the breast cancer subtype [8]. However, the median sur-
vival of patients with metastatic breast cancer is 4 to 5 years, 
and patients with the triple-negative subtype have a median 
survival of only 10 to 13 months [9, 10].

Because surgery for metastatic lesions is not for oncologi-
cal control but for palliative control of pain and preserva-
tion of function in the organ with metastases, the role of 
systemic therapy for metastatic breast cancer is important. 
The expression of HER2, the estrogen receptor (ER), and 
progesterone receptor (PR) is associated with progression 
and metastasis of breast cancer [11]. Depending on the 
breast cancer subtype (i.e., hormone receptor+/HER2−, 
HER2+, or triple-negative subtype), hormone therapy, tar-
geted therapy, and chemotherapy are used as single agents, 
and combination therapy is used as the initial or later line 
of therapy for metastatic breast cancer [4, 12]. Although 
mutations in BRACA1, BRACA2, ERBB2, and ESR1 can 
be targeted with clinical efficacy, the clinical application of 
genomics plays a limited role at present [4, 13, 14]. The 
next-generation treatment of metastatic cancer requires a 
comprehensive understanding of both the pathological sub-
type and genomic and clinical profiles.

Several studies of metastatic breast cancer have reported 
the related gene signatures in an attempt to predict metas-
tasis and recurrence [1, 15–17]. Previous studies have used 
applications such as Cytoscape to provide evidence of the 
presence and strength of the associations between breast 
cancer metastasis and the related pathways of selected genes 
[15, 18]. These applications allow for a holistic examina-
tion of the interactions of genes, the environment, and clin-
icopathological factors (e.g., age, sex, phenotype) that are 
associated with breast cancer metastasis. Understanding the 
causal relationships between breast cancer metastasis and 
effectors after metastasis may lead to opportunities to use 
these associated factors as candidates for therapy and pre-
vention of breast cancer metastasis.

In the clinical and research fields, machine learning meth-
ods have been used to study statistical relationships in dis-
ease progression through the creation of causal networks 
from large and complicated health data [19, 20]. Statistical 
machine learning methods can help to identify the causes 
as key upstream regulators from a causal network inferred 
from genomic, clinical, and environmental data related to 
breast cancer metastasis. Causal Bayesian networks (CBNs) 

are used to learn the causal networks inferred from genomic 
data [20, 21]. A CBN is a directed acyclic graph comprising 
nodes, which represent the random variables being modeled, 
and intervening arrows, which represent the relationships 
between the random variables [19]. CBNs have been used 
to identify the role of osteoblasts in the formation of breast 
cancer bone metastasis [21].

As mentioned above, the direct causal networks between 
genes, clinical information, and pathological findings related 
to breast cancer with metastasis are not well understood. 
Therefore, we performed a CBN analysis of microarray and 
clinical and pathological data from the Gene Expression 
Omnibus (GEO) to obtain a causal network for bone, brain, 
and lung metastases of breast cancer.

Materials and methods

Data collection from GEO and data mining

Microarray datasets were retrieved from the GEO data-
base of the National Center for Biotechnology Informa-
tion (NCBI) of the US National Institutes of Health (https​
://www.ncbi.nlm.nih.gov/geo/; GEO and NCBI websites 
accessed in August 2018) [22]. The criteria for the enrolled 
datasets were as follows: (i) datasets with the GEO series 
(GSE) of human breast cancer alone or with bone, brain, or 
lung metastases; (ii) studies measuring gene expression in 
humans (Homo sapiens); (iii) studies that collected tissues 
extracted from breast cancer; and (iv) studies with clinical 
and pathological information, including age, pathology, 
expression of the ER, PR, and HER2 receptors, and adjuvant 
hormone therapy or chemotherapy.

Initially, four studies of the metastases of breast cancer 
were identified. One study (GSE 5327) did not provide 
other information about bone and brain metastases, and 
was excluded, leaving three studies (GSE 2603, 12276, and 
2034) identified for the present study. These three studies 
included 365 samples from patients who were listed by 
sample accession numbers (GSM) in the GEO database 
(Tables 1 and 2). The clinical and pathological character-
istics are summarized in Table 3. As shown in Table 3, the 
metastasis of breast cancer was significantly related to the 
expression of the PR. Expression of the ER and PR, and 
adjuvant hormone therapy were associated with a higher 
risk of lung metastasis alone, whereas expression of the ER 
was associated with brain metastasis of breast cancer alone.  

We transformed the normalized gene expression levels 
into z-scores per gene and discretized the z-values into 
the categories less than − 1 (z <  − 1), between − 1 and 1 
(− 1 ≤ z ≤ 1), and more than 1 (z > 1) to represent low expres-
sion, no change in expression, and high expression of a gene, 
respectively [21]. To learn the CBNs, we used Bayesian 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Network Inference with Java Objects (BANJO), which is a 
computational modeling tool based on a data-driven method 
that uses Bayesian network frameworks to obtain directed 
inference networks [21, 23]. Computationally, learning 
CBN becomes exponentially expensive in search time as 
the number of parents in the CBN increases. In learning 
CBN, the usage of memory and required computing time 
by allowing six or more parents in a CBN structure is too 
expensive, it does not justify the mere gain of likelihood 
in the CBN structure with six or more parents. Because of 
this, to have parsimonious models, all CBNs learned from 
the data included in this study were obtained by limiting the 
possible number of parents to five.

Selection of candidate genes

Because the gene expression data in the three studies were 
collected using different microarray platforms comprising 
different numbers of gene probes, we first selected common 
genes that were present in all GSEs, and three GSEs from 
four studies and 13,229 genes were selected. After collec-
tion of all data in the three GSEs, we prepared a dataset 
(denoted as D°) comprising variables that represent the gene 
expression levels (low, no change, or high) of 13,229 genes 
and the following nine clinical variables for 365 patients: 
age, bone metastasis, brain metastasis, lung metastasis, ER 
expression, PR expression, HER2 receptor expression, adju-
vant chemotherapy, and hormone therapy (Table 2). Using 
D°, we searched for additional relevant candidate genes 
among the 13,229 genes and selected the top 10% corre-
lated genes associated with the presence of bone, brain, or 

lung metastasis (1323 genes) in D°. We also selected 159 
signature genes associated with distant metastasis of breast 
cancer based on two published studies [10, 11]. Adding the 
159 signature genes to the 1323 associated genes produced 
1467 unique genes (15 genes were common between the 
signature and correlated genes). Finally, we created a dataset 
with 1476 variables (denoted as D1) by extracting data for 
the expression of 1467 genes from D0 and adding the nine 
clinical variables for the 365 patients.

Overall analysis: learning CBN structure

For CBN structure learning, we performed independent runs 
with four different length of time, i.e., 3 h, 6 h, 12 h, and 
24 h. For each of the 3 h, 6 h, 12 h, and 24 h run, we per-
formed three independent CBN structure learning. There-
fore, a total of 12 runs of independent CBN structure learn-
ing with total of 3 × 3 h + 3 × 6 h + 3 × 12 h + 3 × 24 h = 13
5 h of runs were performed. Using the dataset D1, we output 
12 best log-likelihood CBN structures for each run: three 
best structures from each 3, 6, 12, and 24 h runs. From the 
12 best log-likelihood structures reported for each run, we 
selected the network with the highest log-likelihood score 
and denoted this as S1 (note that S1 includes 1476 variables, 
each representing a gene expression or clinical information). 
The first-degree Markov blanket (MB) of variable X in the 
CBN (denoted as MB [X]) was defined as the set of vari-
ables that represents the direct causes (parents) of X, direct 
effects (children) of X, and direct causes (parents) of the 
direct effects (children) of X. (X itself was excluded from 
MB [X]). The second-degree MB of X, third-degree MB 

Table 1   Information of enrolled Gene Expression Omnibus series experiments and Gene Expression Omnibus Format in Text format sample 
files

References Study titles GSE number Number of subjects having breast 
cancer without metastasis/with 
metastasis (bone, brain or lung)

Gene information related with 
metastases

1 Minn et al. [2] Genes that mediate breast cancer 
metastasis to lung

2603 55/27 (14 bone metastasis, 5 brain 
metastasis, 14 lung metastasis)

Twelve genes are significantly 
associated with lung-metastasis-
free survival, including MMP1, 
CXCL1 and PTGS2

2 Bos et al. [3] Genes that mediate breast cancer 
metastasis to the brain

12,276 19/185 (111 bone metastasis, 
16 brain metastasis, 45 lung 
metastasis)

ST6GALNAC5 specifically medi-
ates brain metastasis

EGFR ligands and COX2 were 
linked to breast cancer infiltra-
tion of the lungs, but not the 
bones or liver

3 Wang et al. [4] Gene-expression profiles to 
predict distant metastasis of 
lymph-node-negative primary 
breast cancer

2034 191/95 (69 bone metastasis, 
10 brain metastasis, 25 lung 
metastasis)

The study revealed a 76-gene sig-
nature that accurately predicts 
distant tumour recurrence

4 Minn et al. [5] Lung metastasis genes couple 
breast tumor size and metastatic 
spread

5327 47/11 (7 lung metastasis) Lung metastasis gene-expression 
signature (LMS)
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of X, etc., were defined as MB (MB [X]), MB (MB [MB 
(X)]), etc., respectively. Genes were sparsely connected in 
the best CBN networks that we learned from the datasets. 
This resulted with too few genes from the first-degree MB 
of the disease of interest. To include important genes that 
are closely connected to the disease, in the subsequent learn-
ing of the CBN structure, we selected the variables from 
either the second-degree MB or the third-degree MB of a 
disease. From S1, we identified 139 variables comprising 93 
signature genes having direct or indirect edges with bone, 
brain, or lung metastases nodes, 37 genes derived from the 

third-degree MB of bone, brain, or lung metastases nodes, 
and nine clinical variables. From dataset D1, we created a 
new dataset with these 139 variables of the 365 patients 
(denoted as D2). We again learned CBNs using D2 [21]. 
This follow-up CBN learning using D2 was performed the 
same as for CBN using D1. From the 12 best log-likelihood 
structures reported by each independent run, we selected 
the network with the highest log-likelihood score, which 
we denoted as S2 (note that S2 includes 139 variables, each 
representing a gene expression and clinical information).

Table 2   Enrolled three GSEs and 365 GSMs

GSE GSM

GSE2603 (70 GSMs) GSM50034, GSM50035, GSM50036, GSM50038, GSM50039, GSM50040, GSM50043, GSM50044,GSM50046, 
GSM50048, GSM50049, GSM50051, GSM50052, GSM50053, GSM50054, GSM50059, 
GSM50060,GSM50061, GSM50062, GSM50063, GSM50064, GSM50065, GSM50066, GSM50067, 
GSM50068, GSM50069, GSM50070, GSM50071, GSM50072, GSM50073, GSM50074, GSM50075, 
GSM50078, GSM50079, GSM50080, GSM50082, GSM50083, GSM50084, GSM50085, GSM50086, 
GSM50087, GSM50092, GSM50093, GSM50094, GSM50095, GSM50096, GSM50097, GSM50098, 
GSM50100, GSM50101, GSM50102, GSM50103, GSM50104, GSM50106, GSM50107, GSM50110, 
GSM50111, GSM50112, GSM50114, GSM50115, GSM50116, GSM50118, GSM50119, GSM50120, 
GSM50121, GSM50122, GSM50123, GSM50128, GSM50130, GSM50131

GSE12276 (53 GSMs) GSM308256, GSM308257, GSM308258, GSM308259, GSM308260, GSM308261, GSM308262, GSM308263, 
GSM308264, GSM308265, GSM308266, GSM308267, GSM308268, GSM308269, GSM308270, GSM308271, 
GSM308272, GSM308273, GSM308274, GSM308275, GSM308276, GSM308277, GSM308278, GSM308279, 
GSM308280, GSM308281, GSM308282, GSM308284, GSM308285, GSM308286, GSM308287, GSM308289, 
GSM308290, GSM308291, GSM308292, GSM308293, GSM308296, GSM308297, GSM308298, GSM308299, 
GSM308300, GSM308301, GSM308302, GSM308303, GSM308304, GSM308305, GSM308306, GSM308307, 
GSM308308, GSM308309, GSM308310, GSM308311, GSM308312

GSE2034 (242 GSMs) GSM36777, GSM36778, GSM36779, GSM36780, GSM36781, GSM36783, GSM36784, GSM36785, GSM36786, 
GSM36787, GSM36788, GSM36789, GSM36793, GSM36795, GSM36796, GSM36797, GSM36798, 
GSM36799, GSM36800, GSM36801, GSM36802, GSM36803, GSM36804, GSM36806, GSM36809, 
GSM36810, GSM36811, GSM36813, GSM36815, GSM36816, GSM36817, GSM36818, GSM36819, 
GSM36820, GSM36822, GSM36823, GSM36824, GSM36825, GSM36826, GSM36827, GSM36828, 
GSM36829, GSM36830, GSM36831, GSM36832, GSM36833, GSM36834, GSM36835, GSM36836, 
GSM36837, GSM36838, GSM36839, GSM36840, GSM36841, GSM36842, GSM36843, GSM36845, 
GSM36846, GSM36849, GSM36850, GSM36851, GSM36852, GSM36853, GSM36855, GSM36856, 
GSM36857, GSM36858, GSM36859, GSM36860, GSM36861, GSM36862, GSM36863, GSM36864, 
GSM36865, GSM36866, GSM36867, GSM36868, GSM36869, GSM36870, GSM36872, GSM36873, 
GSM36874, GSM36875, GSM36876, GSM36877, GSM36878, GSM36879, GSM36880, GSM36881, 
GSM36882, GSM36883, GSM36884, GSM36885, GSM36886, GSM36887, GSM36888, GSM36889, 
GSM36891, GSM36892, GSM36893, GSM36894, GSM36895, GSM36896, GSM36897, GSM36899, 
GSM36900, GSM36901, GSM36903, GSM36904, GSM36906, GSM36908, GSM36909, GSM36910, 
GSM36911, GSM36912, GSM36913, GSM36914, GSM36915, GSM36918, GSM36919, GSM36920, 
GSM36921, GSM36922, GSM36923, GSM36924, GSM36925, GSM36926, GSM36927, GSM36928, 
GSM36929, GSM36930, GSM36931, GSM36932, GSM36934, GSM36935, GSM36936, GSM36937, 
GSM36938, GSM36939, GSM36940, GSM36941, GSM36942, GSM36943, GSM36944, GSM36945, 
GSM36946, GSM36947, GSM36948, GSM36949, GSM36950, GSM36951, GSM36953, GSM36954, 
GSM36955, GSM36956, GSM36957, GSM36958, GSM36959, GSM36960, GSM36961, GSM36963, 
GSM36964, GSM36965, GSM36966, GSM36967, GSM36968, GSM36969, GSM36970, GSM36971, 
GSM36972, GSM36973, GSM36974, GSM36975, GSM36976, GSM36977, GSM36979, GSM36980, 
GSM36981, GSM36982, GSM36984, GSM36986, GSM36987, GSM36988, GSM36989, GSM36990, 
GSM36991, GSM36992, GSM36994, GSM36995, GSM36996, GSM36997, GSM36998, GSM36999, 
GSM37000, GSM37001, GSM37002, GSM37003, GSM37004, GSM37008,GSM37010, GSM37012, 
GSM37014, GSM37015, GSM37017, GSM37018, GSM37019, GSM37021, GSM37022, GSM37023, 
GSM37024, GSM37025, GSM37026 GSM37028, GSM37029, GSM37030, GSM37031, GSM37032, 
GSM37033, GSM37034, GSM37035, GSM37036,GSM37037, GSM37038, GSM37039, GSM37040, 
GSM37042, GSM37044, GSM37045,GSM37047, GSM37048, GSM37049, GSM37050, GSM37051, 
GSM37052, GSM37053,GSM37054, GSM37055, GSM37057, GSM37058, GSM37059, GSM37060, GSM37062
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Table 3   Clinopatholgoical information of enrolled 365 patients with breast cancer

Bold indicates the significance of P value < 0.05
Reff represents the group with the lowest risk

Clinopathology Metastasis Crude OR [95% confi-
dence interval (CI)]

P Bone Crude OR [95% confi-
dence interval (CI)]

P

Yes No Yes No

Age
< 40 years 38 17 21 Reff 11 27 Reff
40–50 years 206 94 112 1.037 (0.517–2.079) 0.919 60 146 1.009 (0.470–2.163) 0.982
≥ 60 years 121 43 78 0.681 (0.325–1.427) 0.307 26 95 0.672 (0.295–1.532) 0.342
Estrogen receptor
Positive 240 96 144 0.770 (0.498–1.191) 0.24 69 171 1.398 (0.844–2.316) 0.192
Negative 125 58 67 Reff 28 97 Reff
Progesterone receptor
Positive 195 73 122 0.657 (0.433–0.999) 0.049 49 146 0.853 (0.536–1.358) 0.503
Negative 170 81 89 Reff 48 122 Reff
HER2 receptor
Positive 77 34 43 1.107 (0.667–1.838) 0.694 24 53 1.334 (0.769–2.313) 0.304
Negative 288 120 168 Reff 73 215 Reff
Adjuvant chemotherapy
Yes 78 37 41 1.311 (0.793–2.168) 0.29 18 60 0.790 (0.439–1.421) 0.43
No 287 117 170 Reff 79 208 Reff
Adjuvant hormone therapy
Yes 63 33 30 1.645 (0.954–2.839) 0.072 20 43 1.359 (0.753–2.452) 0.307
No 302 121 181 Reff 77 225 Reff

Clinopathology Brain Crude OR [95% confi-
dence interval (CI)]

P Lung Crude OR [95% confi-
dence interval (CI)]

P

Yes No Yes No

Age
< 40 years 2 36 Reff 7 31 Reff
40–50 years 15 191 1.414 (0.310–6.449) 0.653 24 182 0.584 (0.232–1.471) 0.25
≥ 60 years 3 118 0.458 (0.074–2.846) 0.391 18 103 0.774 (0.296–2.023) 0.6
Estrogen receptor
Positive 7 233 0.259 (0.100–0.667) 0.003 20 220 0.301 (0.162–0.558) 0
Negative 13 112 Reff 29 96 Reff
Progesterone receptor
Positive 7 188 0.450 (0.175–1.155) 0.089 13 182 0.266 (0.136–0.521) 0
Negative 13 157 Reff 36 134 Reff
HER2 receptor
Positive 2 75 0.400 (0.091–1.763) 0.211 10 67 0.953 (0.542–2.008) 0.899
Negative 18 270 Reff 39 249 Reff
Adjuvant chemotherapy
Yes 6 72 1.625 (0.603–4.378) 0.333 15 63 1.771 (0.909–3.453) 0.09
No 14 273 Reff 34 253 Reff
Adjuvant hormone therapy
Yes 6 57 1.414 (0.519–3.847) 0.496 14 49 2.180 (1.093–4.348) 0.024
No 14 288 Reff 35 267 Reff
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Subgroup analyses for bone, brain and lung 
metastasis

We performed subgroup analyses by obtaining the three 
CBNs learned from datasets with patients who had (i) 
breast cancer without metastasis or with bone metastasis 
alone, (ii) breast cancer without metastasis or with brain 
metastasis alone, and (iii) breast cancer without metastasis 
and with lung metastasis alone.

Selection of patients and variables for CBN

Among the 365 patients, 228 (62.4%) had nonmetastatic 
breast cancer, 77 (21.0%) had bone metastasis alone, 8 
(2.19%) had brain metastasis alone, and 25 (6.84%) had lung 
metastasis alone. The total numbers of enrolled patients in 
the subgroup analyses for bone, brain, and lung were 305, 
236, and 253, respectively. Although the number of patients 
differed according to the site of metastasis, we used the same 
method to identify the candidate genes as described earlier 
in the overall analysis. The first three datasets (denoted as 
Dbone1, Dbrain1, and Dlung1) included the top 10% of genes 
for bone, brain, and lung metastases (1323 genes), signature 
genes (144 genes), and clinical information (seven variables 
including age, ER, PR, HER2 receptor, adjuvant chemother-
apy, adjuvant hormone therapy, and bone metastasis, brain 
metastasis, or lung metastasis) [15, 16].

Learning the CBN structures

After we learned CBNs using the first three datasets 
(Dbone1, Dbrain1, and Dlung1) the same way we learned 
CBNs in the overall analysis, we obtained three CBNs 
with the highest log-likelihood score, which we denoted as 
Sbone1, Sbrain1 and Slung1. In the second set of datasets for 
the follow-up CBN learning, which we denoted as Dbone2, 
Dbrain2 and Dlung2, the datasets included the following var-
iables: (i) genes within the third-degree MB of bone, brain, 
and lung metastasis variables in Sbone1, Sbrain1 and Slung1; 
(ii) clinical information; (iii) signature genes having direct or 
indirect edges with bone, brain, or lung metastases nodes in 
the first three CBNs (Sbone1, Sbrain1, and Slung1); and (iv) 
genes with top 10% correlations from the overall analysis 
using D0. The follow-up CBN learning was performed fol-
lowing the same process as described in the overall analysis 
(see “Overall analysis: learning CBN structure” section).

Among the 12 best log-likelihood structures reported by 
each independent run, we chose the network with the highest 
log-likelihood score, which we denoted as Sbone2, Sbrain2, 
and Slung2. We chose the variables within the third-degree 
MB of bone, brain, or lung metastasis variables in Sbone2, 
Sbrain2, and Slung2. As we noted earlier, to include the 
important of genes that are closely connected to a disease, 

if second-degree MB of the disease included multiple num-
ber of genes, we used the variables in the second-degree 
MB instead of the third-degree MB of the disease. Three 
new datasets (denoted as Dbone3, Dbrain3, and Dlung3) were 
created by selecting variables in the second- or third-degree 
MB of bone, brain, or lung metastasis variables in Sbone2, 
Sbrain2, and Slung2 for 305, 236, and 253 patients, respec-
tively. We then performed CBN learning using Dbone3, 
Dbrain3, and Dlung3 following the same processes as used 
in the previous analyses. Finally, we obtained the structures 
with the highest log-likelihood score, which we denoted as 
Sbone3, Sbrain3, and Slung3.

Learning CBN parameters

From the final highest log-likelihood CBNs (Sbone3, 
Sbrain3, and Slung3), we represented the first-degree MB 
for the bone, brain, and lung metastasis variables and 
learned parameters (conditional probabilities) using Dbone3, 
Dbrain3, and Dlung3, which we denoted as CBNbone1MB, 
CBNbrain1MB, and CBNlung1MB (note that the three struc-
tures include variables that each represent gene expression, 
pathological information, and metastasis location). In addi-
tion, we investigated the relationships between variables 
and the influence of the status of bone, brain, and lung 
metastasis of breast cancer on the expression of other genes 
in the Bayesian structure. GeNIe (BN Graphical Network 
Interface, version 2.2.1; BayesFusion, LLC, Pittsburgh, PA, 
USA) was used to learn these parameters.

Enrichment analysis for causal relationships and validation

We also ran an MCMC Order search (denoted as Order 
algorithm) with settings of the maximum number of par-
ents as five without any prior knowledge given [24]. We 
report > 99% probable orders and, for each order, we 
report > 99% probable structures using Dbone3, Dbrain3, 
and Dlung3 [25]. We then compared the results with the 
CBNs learned earlier.

We ran three independent runs of the Order algorithm of 
4, 24, and 48 h (total of 76 h runs). After obtaining the three 
orders of groups with the best log-likelihood score (denoted 
as PPbone, PPbrain, and PPlung), the same the order had 
a group of structures that included the structure with best 
log-likelihood score. Finally, we chose the three structures 
with the best log-likelihood score using the structure code 
and denoted these as PPSbone, PPSbrain, and PPSlung. 
After comparing the log-likelihood scores between Sbone3 
and PPSbone, between Sbrain3 and PPSbrain, and between 
Slung3 and PPSlung, we chose the three structures with the 
higher log-likelihood score, which we denoted as CBNbone, 
CBNbrain, and CBNlung. The Order algorithm summarizes 
all plausible CBNs, which provided better information 
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for the mechanistic understanding underlying the roles of 
gene–gene and gene–environment interactions in develop-
ment of cancer.

We further validated CBNbone1MB, CBNbrain1MB, 
and CBNlung1MB structures by (i) measuring how well the 
structures fit the data (maximum likelihood and conditional 
independencies); (ii) comparing the CBN structures with 
current knowledge in the published literature; (iii) using 
receiver-operating characteristic curve and relative risk 
to report the sensitivity and specificity of the CBN; and 
(iv) evaluating CBNbone1MB, CBNbrain1MB, and CBN-
lung1MB using leave-one-out cross-validation (LOOCV) 
and the area under receiver-operating characteristic curve 
(AUC). We determined the prediction rates of bone, brain, 
and lung metastasis of breast cancer for CBNbone1MB, 
CBNbrain1MB, and CBNlung1MB structures using the 
datasets (denoted as Dbone4, Dbrain4, and Dlung4, respec-
tively) by selecting variables that were parents, children, 
and coparents of bone, brain, or lung metastasis variables 
in CBNbone1MB, CBNbrain1MB, or CBNlung1MB of the 
patients included in Dbone3, Dbrain3, and Dlung3. We calcu-
lated to what extent bone, brain, and lung metastases could 
be expected within the datasets for bone, brain, and lung 
metastasis based on the information in Validation Variables 
(V*). V* comprised (i) the direct cause (parent) and direct 
effect (children) genes and (ii) the disease node that showed 
the strongest influence in the conditional independency test 
[26]. Lastly, we investigated the degree of conditional inde-
pendencies among variables in the CBNbone1MB, CBN-
brain1MB, and CBNlung1MB structures and determined 
the associations with conditional independency between 
the variables [27].

Availability of data and material

The datasets generated and/or analyzed during the current 
study are available in the GEO public repository (https​://
www.ncbi.nlm.nih.gov/geo/, Gene Expression Omnibus, 
National Center for Biotechnology Information accessed in 
November 2017).

Results

We report here the following site-specific CBN structures 
for breast cancer metastasis: CBNs for bone, brain, and lung 
metastases of breast cancer (S2), CBNbone for bone metasta-
sis of breast cancer, CBNbrain for brain metastasis of breast 
cancer, and CBNlung for lung metastasis of breast cancer 
(Figs. 1, 2, 3, 4). We also report the results of the validation 
of the CBN structures.    

Overall analysis: CBN for bone, brain, and lung 
metastases

Among the 12 CBNs, the CBN with the best log-likelihood 
score had a significantly better data fit than the second-best 
CBN (i.e., P(D1|S1)

P(D1|S1)+P(D1|S�)
> 99.999% where S1 and S′ were 

the best and second-best CBNs, respectively, with 1476 vari-
ables, and D1 was the dataset with the same number of vari-
ables for 365 patients. In the follow-up CBN learning com-
prising the 12 CBNs, one CBN with 139 variables (Fig. 1) 
was significantly better (> 99.999%) than the second-best 
CBN. The two genes CHPF and ARC were the direct plau-
sible cause (parent) and plausible effect (child) of bone 
metastasis, respectively. In brain metastasis, the two genes 
NR2E1 and ANGPTL4 were plausible direct causes (par-
ents). ADM, the plausible direct cause (parent) of ANGTL4, 
was also the plausible direct cause (parent) of the ER. PR 
and CTSW were the plausible direct cause (parent) and plau-
sible effect (child) of lung metastasis, respectively. In addi-
tion, ER was the plausible direct cause (parent) of the PR 
node. Although the results of multivariate regression analy-
sis identified correlations between variables and metastases 
of breast cancer, the best CBN with 139 variables (Fig. 1) 
suggested causal relationships between variables and bone, 
brain, and lung metastases as well as causal relationships 
between the intervening variables and metastases (Table 3).

Subgroup analyses—bone, brain and lung 
metastases

Learning three CBN structures using BANJO and Order code

Bone metastasis  The CBN that best fit the datasets with 
17 variables and 305 patients with no metastasis and bone 
metastasis is shown in Fig.  2a (CBNbone). In CBNbone, 
POLR2J4 (RNA polymerase II subunit JA) was the plau-
sible direct cause of bone metastasis of breast cancer, and 
SPTLC1, ILK, and ALDH3B1 were the plausible direct 
effects of bone metastasis of breast cancer. Because the Order 
algorithm summarized the significant CBN structures iden-
tified here, the most likely summarized structure (PPSbone, 
shown in Fig.  2b) suggested that POLR2J4 was the more 
plausible direct effect of bone metastasis. Using the Order 
algorithm, we found that the following order was the most 
probable: bone metastasis, NRFKB, ALDH3B1, POLR2J4, 
ER, PLXNB1, TRPC1, ILK, CLUD2, PR, CXCL9, LMO4, 
DYNLL1, CD74, KLF5, SPTLC1, and BOLA2.

Brain metastasis  The CBN that best fit the datasets with 
21 variables and 236 patients with no metastasis and brain 
metastasis is shown in Fig. 3a (CBNbrain). The two genes 
PED6A and NR2E1 were plausible direct causes and 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Fig. 1   Causal Bayesian network of genes relevant to breast cancer 
metastasis. The three nodes in red represent metastasis (bone, brain, 
or lung metastasis) nodes. The six nodes in green indicate clinical 

and pathological information connected to the metastasis nodes. The 
nodes in yellow denote signature genes. (Color figure online)

Fig. 2   Causal Bayesian network using BANJO analysis (a) and Order 
algorithm and structural code (b) with genes relevant to bone metas-
tasis of breast cancer. The nodes in red represent bone metastasis. 

The two nodes in green indicate expression of the estrogen and pro-
gesterone receptors related to metastasis. The nodes in yellow indi-
cate signature genes. (Color figure online)
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SCTR was the plausible direct effect of brain metastasis of 
breast cancer in CBNbrain. HER2 was one of the ancestor 
nodes of brain metastasis and had connectivity with brain 
metastasis. The most likely summarized structure found 
using the Order algorithm is shown in Fig. 3b (PPSbrain). 
The order of parent and child nodes, and brain metasta-
sis between CBNbrain and PPSbrain were similar, which 
provides further support for the plausible cause-and-effect 
relationships in CBNbrain. Using the Order algorithm, 
we found that the following order was the most probable: 
CYCS, DFNA5, SPAG11A, PDE6A, ZER1, AGPAT4, 
R2E3, PLS3, SEPT7, HER2, PPP1CC, PARP4, NR2E1, 
PRLH, brain metastasis, SNAPC1, SCTR, ADM, PLEC, 
CFH, and PSMD14.

Lung metastasis  The CBN that best fit the datasets with 
34 variables and 235 patients with no metastasis and lung 
metastasis is shown in Fig. 4a (CBNlung). The most likely 
summarized structure found using the Order algorithm is 
shown in Fig. 4b (PPSlung). HEY1 was a plausible direct 
cause, and KCNF1, SPAG7, ER, PR, and UVRAG were 
plausible direct effects of lung metastasis of breast can-
cer in CBNlung. Chemotherapy was connected with lung 
metastasis as a coparent node of the PR. Using the Order 
algorithm, we found that the following order was the most 

probable: INSIG2, STAC, chemotherapy, HEY1, ZBTB16, 
MAPKAP1, BICD1, ER, GALNT3, TFF1, CMC2, LMO4, 
ARFIP2, ACTR3, ESR1, ARHGEF9, TJP3, PR, FUT3, 
UVRAG, TFG, FSCN1, LYRM9, lung metastasis, IGHA1, 
KCNF1, LRIG1, PRRG1, FABP4, PTGER4, SLC35A1, 
SH3GLB2, ABLIM1, and SPAG7. HEY1 was identified as 
the plausible direct cause of lung metastasis of breast can-
cer in CBNlung and this effect was equally supported by 
PPSlung. However, the location of the plausible effects of 
lung metastasis of breast cancer differed between CBNlung 
and PPSlung.

Learning CBN parameters

Bone metastasis  Parameters (probabilities) of the CBN 
with six variables that represented the first-degree MB 
of the group variable (CBNbone1MB) of CBNbone were 
learned from a new dataset that contained six variables and 
305 patients (denoted as Dbone4) extracted from the data-
set Dbone3 that contained 17 variables and 305 patients 
(Fig. 5a). Using the parameters learned in CBNbone1MB, 
we compared patients with bone metastasis of breast can-
cer (represented as Bonemetastasis with “State1”) with 
those without metastasis including bone metastasis (rep-
resented as Bonemetastasis with “State0”). A high expres-

Fig. 3   Causal Bayesian network using BANJO analysis (a) and Order 
algorithm and structural code (b) with genes relevant to brain metas-
tasis of breast cancer. The nodes in red represent the brain metasta-

sis node. The nodes in green denote expression of the HER2 receptor 
related to metastases. The nodes in yellow represent the nodes of sig-
nature genes. (Color figure online)
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sion level (denoted as “State2”) of SPTLC1 showed that 
the largest change in probability for the four genes and ER 
that showed probability changes (probability of SPTLC1 
having a high expression level (“State2”) increased from 
0.12 (Fig. 5b) to 0.32 (Fig. 5c). A high expression level of 
POLR2J4, a plausible cause (parent) of bone metastasis 
(“State2”), significantly decreased the risk of having bone 
metastasis to 0.05 (Fig. 5e) compared with a low expres-
sion level (“State0”) of, e.g., 0.65 (Fig. 5d). Although the 
expression state (“State 0 and State 1”) of the ER did not 
alter the change in probability of bone metastasis (21% 
and 27%, respectively), a high expression level (“State 
2”) of ILK and ALDH3B1 significantly decreased the 
risk of having bone metastasis to 0.06 and 0, and changed 
the probability of expression of the ER to 0.22 and 0.12, 
respectively.

Brain metastasis  Parameters of the CBN with five vari-
ables that represented the first-degree MB of group vari-
able (CBNbrain1MB) in CBNbrain were learned from a 
new dataset that contained five variables and 236 patients 
(denoted as Dbrain4) extracted from dataset Dbrain3 that 
contained 21 variables and 236 patients (Fig.  6a). We 
compared patients with brain metastasis of breast can-
cer (represented as Brainmetastasis with “State1”) with 
those without bone metastasis (represented as Brainme-
tastasis with “State0”). We found that a high expression 
level (denoted as “State2”) of NR2E1 produced the largest 
change in probability of the four genes that showed proba-
bility changes (probability of NR2E1 having high expres-
sion level (“State2”); the probability decreased from 0.95 
(Fig.  6b) to 0.61 (Fig.  6c). When the expression level 
of NR2E1 was high (“State 2”) and that of PDE6A low 

Fig. 4   Causal Bayesian network using BANJO analysis (a) and the 
Order algorithm and structural code (b) with genes associated with 
lung metastasis of breast cancer. The nodes in red represent bone 

metastasis. The three nodes in green denote the estrogen and proges-
terone receptors, and chemotherapy for metastasis. The nodes in yel-
low indicate the nodes of signature genes. (Color figure online)
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(“State0”), the probability of brain metastasis was very 
small (< 0.01) (Fig. 6d). We also found that when NR2E1 
expression was neither low nor high (“State 1”) and 
PDE6A expression was low (“State0”), the probability of 
brain metastasis was high (> 0.76) (Fig. 6e). Although the 
results are limited by the small number of patients with 
brain metastasis (eight of 236 patients), our findings sug-
gest that it may be worthwhile to follow up NR2E1 and 
PDE6A as candidates genes in clinical studies comparing 
those with and without brain metastasis of breast cancer.

Lung metastasis  Parameters of the CBN with five vari-
ables that represented the first-degree MB of group vari-
able (CBNlung1MB) in CBNlung were learned from a new 
dataset that contained 10 variables and 253 patients with 
25 lung metastases (denoted as Dlung4) extracted from 
dataset Dlung3 that contained 34 variables and 253 patients 
(Fig.  7a). We compared patients with lung metastasis of 
breast cancer (represented as Lungmetastasis with “State1”) 
with those without lung metastasis (represented as Lungme-
tastasis with “State0”). ER and PR status showed the larg-
est change in probabilities among the seven genes and ER 

and PR expression that showed that the probability of ER 
expression (“State1”) decreased from 0.69 (Fig. 7b) to 0.41 
(Fig. 7c), and the probability of PR expression (“State1”) 
decreased from 0.51 (Fig. 7b) to 0.23 (Fig. 7c). For neither 
high nor low expression of HEY1, a plausible cause of lung 
metastasis (“State1”), the risk of having bone metastasis 
increased to 0.43 (Fig. 7e) compared with a high expression 
level of 0.09 (“State2”) (Fig. 7d).

Assessment and validations

Bone metastasis  We used LOOCV to evaluate further the 
predictive performance of the CBNbone parameterized by 
Dbone3. This analysis produced a value of 75.69% (3925 
correct predictions out of 17 × 305 cases). Using only direct 
causes and effects of bone metastasis of breast cancer in 
CBNbone1MB (six of 17 variables), the LOOCV value was 
76.72% (1404 correct predictions out of 6 × 305 cases).The 
AUC for predicting bone metastasis of breast cancer was 
67.68% in CBNbone1MB. CBNbone1MB parameterized by 
Dbone4 predicted that two patients would have a very high 
probability (> 0.91) of having bone metastasis of breast 

Fig. 5   Causal Bayesian network Structure Using GeNIe. The image 
shows the causal Bayesian structure learned with the existing data set 
using GeNIe (A). The parent, group, child, and coparent nodes are 
shown in yellow, red, light blue, and blue, respectively. States 0 and 
1 in a group node represent the probability of bone metastasis and 

expression of the estrogen receptor, respectively. States 0, 1, and 2 
in other nodes represent discretized values 0, 1, and 2, respectively. 
Images B, C, D, and E show nodal changes after artificial manipula-
tion of the data in the parent and bone metastasis nodes. (Color figure 
online)
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cancer, and both of them had the metastasis. In addition, 
CBNbone1MB predicted that five patients would have a 
very low probability (< 0.000372) of having bone metas-
tasis of breast cancer, and none of them had the metastasis 
(Table 4).

The calculated probabilities of conditional independ-
ence between nodes showed that conditional independency 
relationships between five variables and the bone metas-
tasis variable in CBNbbone1MB were consistent with the 
structure of CBNbrain1MB (Fig. 8a). Although the con-
nectivity between all variables cannot be explained using 
the calculated probabilities of conditional independence, 
the independencies between the parent (POLR2JA) and 
children (SPTLC1 and ILK) nodes in the conditioned bone 
metastasis node were consistent with the CBNbrain1MB 
structure. Additionally, the data supporting the conditional 
independence of SPTLC1 and ALDH381 expression lev-
els of the POLR2JA expression, and whether a patient 
had Bonemetastasis cancer (“2 4|0, 1” with the highest p 
value of 0.99538 in Fig. 8a) provide a plausible mecha-
nistic understanding of the genes whose relationships are 
important to the development of bone metastasis of breast 
cancer.

Brain metastasis  The prediction performance of CBNbrain 
parameterized by Dbrain3 analyzed using LOOCV was 
78.97% (3914 correct predictions out of 21 × 236 cases). 
When we used only direct causes and effects of brain 
metastasis of breast cancer in CBNbrain1MB (five of 21 
variables), the value was 83.14% (981 correct predictions 
out of 5 × 236 cases). The AUC value for predicting bone 
metastasis of breast cancer was 77.63% in CBNbrain1MB. 
CBNbrain1MB parameterized by Dbrain4 predicted that 
five patients would have a very low probability (< 0.0012) 
of having brain metastasis of breast cancer, and none of the 
five had the metastasis (Table 5). No patients who actually 
had brain metastasis of breast cancer were predicted to have 
the metastasis with a significant probability (> 0.5). This 
might have reflected the small number of patients with brain 
metastasis (eight) compared with the number of patients 
without the metastasis (228).

The calculated probabilities of conditional independence 
between nodes showed that the conditional independency 
relationships between the four variables and brain metastasis 
variable in CBNbrain1MB were consistent with the struc-
ture of CBNbrain1MB (Fig. 8b). There was little disagree-
ment with the structure in the probabilities of conditional 

Fig. 6   Causal Bayesian network Structure using GeNIe. The image 
shows the causal Bayesian structure learned with the existing data set 
using GeNIe (A). The parent, group, child, and coparent nodes are 
shown in yellow, red, turquoise, and light blue, respectively. States 
0 and 1 in the group node suggest the probability of brain metasta-

sis, respectively. States 0, 1, and 2 in other nodes represent the gene 
expression levels of low, no change, and high, respectively. Images 
B–E show nodal changes after artificial manipulation of the data in 
the parent and brain metastasis nodes. (Color figure online)
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independence between nodes. The weak stability of the 
structure associated with brain metastasis may be attributed 
to the small number of patients with brain metastasis of 
breast cancer.

Lung metastasis  The prediction performance of CBN-
lung parameterized by Dlung3 analyzed by LOOCV was 
78.55% (6757 correct predictions out of 34 × 206 cases). 
When we used only direct causes and effects of bone 

metastasis of breast cancer in CBNlungMB (10 out of 34 
variables), the value was 78.69% (1991 correct predic-
tions out of 10 × 206 cases). The AUC for predicting lung 
metastasis of breast cancer was 86.94% in CBNlung1MB. 
CBNlung1MB parameterized by Dlung4 predicted that 
seven patients would have a very high probability (> 0.99) 
of having lung metastasis of breast cancer, and all of them 
had the metastasis. CBNlung1MB also predicted that five 
patients would have a very low probability (< 0.00001) of 

Fig. 7   Causal Bayesian network Structure Using GeNIe. The image 
shows the causal Bayesian structure learned with the existing data set 
using GeNIe (A). The parent, group, child, and coparent nodes are 
shown in yellow, red, turquoise, and light blue, respectively. States 0 
and 1 in group node represent the probability of lung metastasis and 

expression of the estrogen and progesterone receptors, respectively. 
States 0, 1, and 2 in other nodes represent the gene expression lev-
els of low, no change, and high, respectively. Images B–E show nodal 
changes after artificial manipulation of the data in the parent and lung 
metastasis nodes. (Color figure online)

Table 4   Top five and bottom 
five predicted probabilities of 
subjects having bone metastasis 
of breast cancer

Bone 
metastasis

POLR2J4 SPTLC1 ILK ALDH3B1 Estrogen 
receptor

Prediction

Yes No change High Low No change Yes 0.916315
Yes No change High Low No change Yes 0.916315
Yes Low High No change Low Yes 0.863853
Yes Low No change Low No change Yes 0.818075
Yes No change High No change Low Yes 0.817024
No No change No change Low No change Yes 0.000247
No Low No change No change Low Yes 0.000317
No Low No change No change Low Yes 0.000317
No No change High No change No change No 0.000371
No No change High No change No change No 0.000371
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having lung metastasis of breast cancer, and none of them 
had the metastasis (Table 6). The calculated probabilities 
of conditional independence between nodes involving 
nine variables and lung metastasis in CBNlung1MB were 
consistent with the structure of CBNlung1MB (Fig. 8c). 
A high degree of agreement with the structure was found 
in the probabilities of conditional independence between 
nodes and it was plausible. HEY1 was found to be a direct 
cause of lung metastasis.

Discussion

We conducted CBN analyses to build four CBNs from the 
GEO gene expression data obtained for patients with breast 
cancer with or without bone, brain, and lung metastases. 
Although we built the statistical models for causal infer-
ence, we have also incorporated prior medical and biological 
information, such as that obtainable in clinical and medical 
practice, and information involving known signature genes 
related to metastatic breast cancer. In the statistical analysis 

of the clinical and immunochemical parameters associated 
with bone, brain, and lung metastases in the 365 included 
patients with breast cancer, the general metastasis of breast 
cancer correlated significantly with the expression of the ER 
and PR in patients with brain metastasis, and with ER and 
PR expression, and adjuvant chemotherapy in patients with 
lung metastasis.

In the overall analysis of the CBN involving concurrent 
bone, brain, and lung metastases (Fig. 1), ER and PR expres-
sion was connected to brain and lung metastases. Although 
the connection between brain metastasis and ADM could be 
blocked in the conditioned ANGPTL4 node, brain metas-
tasis (Brainmetastasis node) and ER expression had the 
same plausible causes (parents) as those of ADM. This sug-
gest that ADM and ANGLT4 play roles in the interactions 
between brain metastasis and ER expression (Table 3).

The angiogenic peptide adrenomedullin is encoded 
by ADM and is secreted by breast cancer cells, and the 
peptide accelerates bone metastasis of breast cancer [28]. 
The ADM expression level is associated with neurode-
generative diseases such as Alzheimer’s disease [29]. 

Fig. 8   Probability of conditional independence between nodes. Pan-
els A–C illustrate the probabilities of conditional independence 
under different conditions and corresponding CBNbone1MB, CBN-
brain1MB, and CBNlung1MB structures, respectively. All p values 
were calculated under the null hypothesis that the given statement is 
conditionally independent. For example, in Panel A, index 0 through 

5 represents variables in the causal Bayesian network (e.g., 0 as 
POLRJ4 and 5 as EstrogenR), and “0 3|1” indicates that the expres-
sion level of POLRJ4 and expression level of ILK are conditionally 
independent of whether a given patient has BoneMetastasis cancer. A 
p value of 0.9718 for the statement “0 3|1” means that it is highly 
likely the statement is true given the data. (Color figure online)
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ANGPLT4 encodes angiopoietin-like 4 protein, which is 
highly expressed in advanced breast cancer [30]. ADM 
appears to affect Brainmetastasis via angiopoietin-like 4 
protein in the CBN used in the brain metastasis analysis 
(Fig. 3). In the brain metastasis CBN (Fig. 3), a direct 
parent node of Brainmetastasis was identified as NR2E1, 
which is known as nuclear receptor TLX or NR2E1 pro-
tein. TLX has been implicated in breast cancer and the 
initiation and progression of nervous system disorders in 
humans [31, 32]. These findings suggest that angiogenic 
peptides, which are encoded by ADM and ANGPLT4, and 
the regulator of neural stem cells, which is encoded by 
NR2E1, may be important causal factors underlying brain 
metastasis of breast cancer.

PR expression was identified as a plausible direct cause of 
lung metastasis of breast cancer (Lungmetastasis node), and 
ER expression as a plausible direct cause of PR expression 
in the overall analysis CBN (Fig. 1). These hormone recep-
tors may be effective targets for lung metastasis of breast 
cancer. Lungmetastasis was also a plausible direct cause of 
CTSW, which encodes cathepsin W. Cathepsins are known 
contributors to invasive human cancers [33]. A plausible 
direct cause of CTSW was identified as SH2D1A, which 
encodes SH2 domain-containing protein 1A. SH2D1A is 
a prognostic stromal gene signature of breast cancer [34].

In the overall analysis CBN (Fig.  1), CHPF, which 
encodes chondroitin sulfate synthase 2, was identified as 
a plausible direct cause bone metastasis of breast cancer 

Table 5   Top five and bottom five predicted probabilities of subjects 
having brain metastasis of breast cancer

Brain 
metasta-
sis

NR2E1 SCTR​ PDE6A SPAG11A Prediction

Yes No 
change

Low No 
change

Low 0.443773

Yes No 
change

No 
change

No 
change

No change 0.14702

Yes No 
change

No 
change

No 
change

No change 0.14702

Yes No 
change

No 
change

No 
change

No change 0.14702

Yes High No 
change

No 
change

No change 0.0291389

No High High High High 0.000278
No High No 

change
High No change 0.000673

No No 
change

High High No change 0.001180

No No 
change

High High No change 0.001180

No No 
change

High High No change 0.001180
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(Bonemetastasis node). It has been recently reported that 
when expressed abnormally in malignant tumors, CHPF pro-
motes lung adenocarcinoma [35]. A plausible direct effect 
in the Bonemetastasis node was identified as ARC, whose 
expression correlates with liver metastasis of colorectal 
cancer [36]. Although the association between breast can-
cer and specific genes has yet to be specified, future studies 
examining associations between genes and breast cancer, 
and the mechanisms underlying these associations, will pro-
vide valuable information for the prevention and treatment 
of metastasis of breast cancer.

In the subgroup analysis of bone metastasis, POLR2J4, 
SPTLC1, ILK, and ALDH3B1 were the plausible direct 
causes or effects in the Bonemetastasis node (Fig. 4). 
POLR2J4, which is one predictor of recurrence-free 
survival in hepatocellular carcinoma patients, has been 
reported to have a direct relationship with bone metas-
tasis [37]. In addition, the low expression of POLR2J4 
affects bone metastasis. Although SPTLC1, ILK, and 
ALDH3B1 were identified as plausible direct effects in 
the Bonemetastasis node, the comparison between patients 
with Bonemetastasis (“State1”) and those without Bonem-
etastasis (“State0”) showed that SPTLC1 expression was 
more likely to be higher in those with Bonemetastasis. By 
contrast, expression of ILK and ALDHH3B1 was more 
likely to be lower in the same patients (Fig. 5b and c). In 
other words, high expression levels (“State 2”) of ILK and 
ALDH3B1 significantly decreased the risk of having bone 
metastasis to 0.06 and 0 by changing the probability of ER 
expression to 0.22 and 0.12, respectively (Bonemetastasis, 
estrogenR = state0|ILK, ALDHH3B1 = state0).

Studies have reported that integrin-linked kinase, which 
is encoded by ILK, induces accelerated breast tumor 
development and regulates the migration of breast can-
cer cells by linkage with the ER [38, 39]. The changes in 
the gene expression ratios in the CBN structures of bone 
metastasis provide incomplete information when used with 
the current data set. However, we assume the biological 
mechanisms underlying bone metastasis involve the direct 
causal and effector genes, and hormone receptors in the 
CBN structure. Therefore, the genes POLR2J4, SPTLC1, 
ILK, and ALDH3B1 may be therapeutic candidates for 
targeted therapy of bone metastasis in breast cancer.

In the subgroup analysis of brain metastasis, NR2E1, 
PDE6A, and SCTR were identified as plausible genes 
that played important roles in the Brainmetastasis node 
(Fig. 3). SCTR is known to stimulate the proliferation and 
migration of breast cancer cells and, therefore, its inclu-
sion explains the association between SCTR and brain 
metastasis of breast cancer [40]. NR2E1 was identified as 
the plausible direct cause (parent) of Brainmetastasis in 
the overall analysis CBN (Fig. 1). A very low probability 
(< 1.0E−10) was shown for Brainmetastasis (“State1”) 

when NR2E1 expression was high (“State2”) (Fig. 6). 
These findings suggest that the regulation of neural stem 
cells by NR2E1 may be an important therapeutic target. In 
the subgroup analysis of lung metastasis, the genes HEY1, 
KCNF1, and UVRAG, and ER and PR expression were 
identified as direct causes or effects of lung metastasis in 
breast cancer (Lungmetastasis node). Some studies have 
reported a relationship between breast cancer and UVRAG 
and ER and PR expression [4, 41, 42]. According to these 
studies, expression of HEY1, UVRAG, and the ER and 
PR appear to trigger lung metastasis in breast cancer. Our 
results support these earlier findings.

Conclusions

The CBNs of bone, brain, and lung metastases of breast 
cancer identified here appear to provide networks for rea-
sonable causal inference. Many genes, including CHPF, 
ARC, ANGPTL4, NR2E1, SH2D1A, CTSW, POLR2J4, 
SPTLC1, ILK, ALDH3B1, PDE6A, SCTR, ADM, HEY1, 
KCNF1, and UVRAG, may be useful candidates for the 
early diagnosis and targeted therapy for metastasis of breast 
cancer. Although CBNs obtained by statistical inference and 
machine learning techniques might be limited by the small 
number of datasets currently available, the results of CBN 
analysis provide insight into the pathophysiology of metas-
tasis of breast cancer. Future studies should collect more 
data about gene expression and clinical information, conduct 
validation studies in wet laboratory and clinical settings, and 
compare their findings to the current causal inference statis-
tical model that we have developed, and the model should 
be updated accordingly.
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