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Deep Learning Model for Real-Time Prediction of
Intradialytic Hypotension

Hojun Lee ,1 Donghwan Yun ,2,3 Jayeon Yoo,1 Kiyoon Yoo,1 Yong Chul Kim ,3 Dong Ki Kim ,3

Kook-Hwan Oh ,3 Kwon Wook Joo ,3 Yon Su Kim,2,3 Nojun Kwak,1 and Seung Seok Han 2,3

Abstract
Background and objectives Intradialytic hypotension has high clinical significance. However, predicting it using
conventional statisticalmodelsmaybedifficult because several factors have interactive and complex effects on the
risk. Herein, we applied a deep learning model (recurrent neural network) to predict the risk of intradialytic
hypotension using a timestamp-bearing dataset.

Design, setting, participants,&measurementsWeobtained261,647hemodialysis sessionswith1,600,531 independent
timestamps (i.e., time-varying vital signs) and randomly divided them into training (70%), validation (5%), calibration
(5%), and testing (20%) sets. Intradialytic hypotension was defined when nadir systolic BP was,90 mmHg (termed
intradialytic hypotension 1) orwhen a decrease in systolic BP$20mmHg and/or a decrease inmean arterial pressure
$10mmHgonthebasisoftheinitialBPs(termedintradialytichypotension2)orpredictiontimeBPs(termedintradialytic
hypotension 3) occurred within 1 hour. The area under the receiver operating characteristic curves, the area under the
precision-recall curves, and F1 scores obtained using the recurrent neural network model were compared with those
obtained using multilayer perceptron, Light Gradient Boosting Machine, and logistic regression models.

Results The recurrent neural network model for predicting intradialytic hypotension 1 achieved an area under the
receiver operating characteristic curve of 0.94 (95% confidence intervals, 0.94 to 0.94), whichwas higher than those
obtained using the other models (P,0.001). The recurrent neural network model for predicting intradialytic
hypotension 2 and intradialytic hypotension 3 achieved area under the receiver operating characteristic curves of
0.87 (interquartile range, 0.87–0.87) and 0.79 (interquartile range, 0.79–0.79), respectively, which were also higher
than those obtained using the othermodels (P#0.001). The area under the precision-recall curve and F1 score were
higher using the recurrent neural network model than they were using the other models. The recurrent neural
network models for intradialytic hypotension were highly calibrated.

Conclusions Our deep learning model can be used to predict the real-time risk of intradialytic hypotension.
CJASN 16: ccc–ccc, 2021. doi: https://doi.org/10.2215/CJN.09280620

Introduction
Intradialytic hypotension (IDH) is an important com-
plication during hemodialysis because it is associated
with subsequent cardiovascular morbidity and mortal-
ity (1,2). Despite the heterogeneity in defining IDH, it
occurs in more than 10% of hemodialysis sessions (3)
and up to 50% of elderly patients (4). Several risk factors
have been described, including female sex, high weight
gain, high ultrafiltration rate, and comorbidities (5–8),
but these factors are dependent on the characteristics of
each study, and there may be unknown factors related
with IDH that are still to be discovered. Cardiovascular
and uremic mechanisms underlie IDH (9,10), but other
mechanisms may also be associated with it. This casual
diversity makes predicting IDH difficult, although a lot
of resources and studies on IDH are available.

Artificial intelligence models have changed the para-
digm of clinical decision making from diagnosis to treat-
ment (11). Among these models, deep learning (12),
which is a subfield of machine learning, stands out

because it can improve the overall performance of health
care, particularly in diagnostic imaging and pathologic
processes, and in the synthetic judgment of big data flow
(13). Deep learning can learn and characterize flow from
a variety of data types, and can thus develop a model
from time-varying sequential inputs. This complex func-
tion may allow the model to predict the risk of IDH in
real time. Herein, we addressed whether a deep learning
model could be used to predict the risk of IDH within
1 hour at any time point using the data from 261,647
hemodialysis sessions with over 1,600,000 independent
timestamps (i.e., time-varying vital signs), and compared
its performance with the performances of other machine
learning and logistic regression models.

Materials and Methods
Data Source and Study Population
The institutional review board of Seoul National

University Hospital approved the study design
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(no. H-1904–143–1029), which was conducted in accor-
dance with the principles of the Declaration of Helsinki.
Electronic health records have been available since
October 2004. Accordingly, 282,396 sessions from
10,053 patients who underwent hemodialysis at Seoul
National University Hospital were retrospectively re-
viewed from October 2004 to December 2018. Hemodi-
alysis sessions from patients aged ,18 years (n515,859)
and those with insufficient clinical information (n54267)
and no laboratory findings (n5623) were excluded. A
total of 261,647 sessions (9292 patients) remained for
analysis, and the data comparing the characteristics of the
hemodialysis sessions that were included and excluded
from the analyses are presented in Supplemental Table 1.
We randomized the patients into a training set (70%) to

develop the model, a validation set (5%) to validate the
model, a calibration set (5%) to calibrate the model, and a
testing set (20%) to test the performance of the model,
wherein the patient-session ratio and IDH incidence were
similarly distributed between sets. The flow chart of study
data retrieval and splitting is shown in Figure 1.

Timestamps of the Hemodialysis Session
Timestamps were on the basis of the BP measurements.

When there were no specific episodes or complications
during hemodialysis, the vital signs were monitored every
1 hour (left image in Figure 2A). However, if vital signs
were unstable, they were monitored more frequently and
the hemodialysis settings were adjusted (right image in
Figure 2A). The total number of independent timestamps
was 1,600,531 out of 261,647 hemodialysis sessions.

Study Outcomes
Three definitions were used for IDH. IDH-1 was defined

when intradialytic nadir systolic BP was ,90 mm Hg
within 1 hour (2). When IDH was defined as a decrease in
systolic BP of $20 mm Hg and/or a decrease in mean

arterial pressure of $10 mm Hg (14,15) within 1 hour, the
reference BPs were determined at initial (IDH-2) or pre-
diction (IDH-3) time point. Each IDH criterion was treated
as a separate binary outcome (i.e., 0 or 1). Mean arterial
pressure was calculated as ([23 diastolic BP] 1 sys-
tolic BP)/3.

Study Variables
The dataset contained information at initial and any time

points during hemodialysis, such as age, sex, vital signs,
comorbidities, medications, and laboratory findings. A list
of features is available in Supplemental Material.

Model Development
The recurrent neural network model is suitable for time

series datasets (16). We used the gated recurrent unit in the
recurrent neural network. The gated recurrent unit com-
bines information on current time (t) with previous time
(t–1). The baseline cell of the gated recurrent unit has
update and reset gates, and the results of these gates reflect
previous information. A single recurrent neural network
model was developed to predict three definitions of IDH.
The recurrent neural network architecture of the study is
given in Figure 2B.
We also developed multilayer perceptron model, Light

Gradient Boosting Machine model, and the logistic re-
gression model to compare their performances with the
recurrent neural network model. These models could not
handle all of the temporal information, and thus, the data at
only two timestamps (prediction time point and its pre-
vious one) were used. The detailed methods were presen-
ted in Supplemental Material and we summarized the
characteristics of the models in Supplemental Table 2.

Model Evaluation
The performances of the models were evaluated using

three criteria: the area under the receiver operating

282,396 hemodialysis sessions
(10,053 patients)

from September 2004 to December 2018

261,647 sessions (9292 patients)
were included in the analysis 

20,752 sessions were excluded due to
Age <18: 15,858 cases (476 patients)
Less than two BP measurements: 4271 cases (1476 patients)
Laboratory information, not available: 623 cases (260 patients)

Training set (70%)
181,600 sessions
(6504 patients)

Validation set (5%)
13,347 sessions
(465 patients)

Calibration set (5%)
16,319 sessions
(464 patients)

Test set (20%)
50,381 sessions
(1859 patients)

Randomization by the patients

Figure 1. | The flow chart of study data retrieval and splitting.
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characteristic curve, the area under the precision-recall
curve, and F1 score, as follows.

Recall :
TP

TP1FN

Precision :
TP

TP1FP

F1 score :
2 3Precision3Recall

Precision1Recall

TP, true positive; FP, false positive; and FN, false negative.
The curves were plotted by varying the thresholds, and

the area under the curves were compared using the DeLong
test. Interpretation of the area under the receiver operating
characteristic curves and the area under the precision-recall
curves was achieved by comparing the values among the
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Figure 2. | Development of recurrent neural network model. (A) Illustrative example of sessions with stable vital signs (left) and intradialytic
hypotension (IDH) (right). The riskof IDHwithin1hourat acertain timepoint (red circle)was calculated.When IDHwasdefinedas adecrease in
systolic BP $20 mm Hg and/or a decrease in mean arterial pressure $10 mm Hg, the reference BPs were determined at initial (IDH-2) or
prediction (IDH-3) time point. Black and gray arrows indicate routine and additional monitoring of BPs, respectively. (B) Architecture of the
proposed recurrent neural network model. Briefly, time-varying and time-invariant features were embedded in the cells with multilayer
perceptron. The deepening effectwas obtained by inserting fully connected layers between cells, and the learningwas stabilized using the layer
normalization. IDH-1, intradialytic hypotension defined as nadir systolic BP,90mmHg; IDH-2, intradialytic hypotension defined as decrease
in systolic BP $20 mmHg and/or decrease in mean arterial pressure $10 mmHg on the basis of BPat initial time point; IDH-3, intradialytic
hypotension defined as decrease in systolic BP $20 mm Hg and/or decrease in mean arterial pressure $10 mm Hg on the basis of BP at
prediction time point. SBP, systolic BP; DBP, diastolic BP; HR, heart rate; BT, body temperature; BFR, blood flow rate; UF, ultrafiltration; DM,
diabetesmellitus;WBC,white blood cell count; BatchNorm, batchnormalization; LayerNorm, layer normalization;GRU, gated recurrent unit;
FC, fully connected; ReLU, rectified linear unit.
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models. All P values were two sided, and values ,0.05
were considered significant. In the decision curve analysis,
models were converted to a logistic regression using
probability theory. Calibrations were performed using
the Platt scaling method (17). All of the performance
indices were measured using the testing set.

Feature Set-Ablation Analysis
To examine the effect of each feature set on the model

performance, we performed a feature set-ablation analysis,
which measured changes in performance by eliminating
one set from the model inputs. The features were catego-
rized into six sets: A (age and sex), B (hemodialysis-related
features), C (vital signs), D (comorbidities), E (laboratory
findings), and F (medications). Variables included in the
sets are summarized in Supplemental Table 3.

Feature Ranking Analysis
We also performed a feature ranking analysis according

to the method used in a previous study (18). Briefly, each

feature was dropped one by one from the testing dataset
when the model was developed, and the prediction results
were compared with the reference prediction results with
all of the features. The detailed explanations and mathe-
matical equations are shown in the Supplemental Material.

Results
Study Cases
The mean age of the hemodialysis sessions in this study

was 62615 years, and over 90% of the sessions were for
conventional hemodialysis. The median value of the
number of BP measurements was 5 (interquartile range
[IQR], 5–9), and the median time interval was 30 (IQR,
20–59) minutes. Nadir systolic BP ,90 mm Hg (IDH-1)
occurred in 11% (n527,971) of the sessions (3827 patients),
whereas decreases in systolic BP of $20 mm Hg or
decreases in mean arterial pressure of $10 mm Hg (IDH-
2 and IDH-3) occurred in 49% (n5128,404 in 8216 patients)
and 51% (n5134,434 in 8415 patients) during hemodialysis,
respectively. We found that the rate of IDH did not oscillate

Table 1. Baseline characteristics of the hemodialysis sessions analyzed in this study

Variables Total (n5261,647)a

Age (yr) 62615
Male, n (%) 151,531 (58)
Hemodialysis type, n (%)
Hemodialysis 243,155 (92)
Hemodiafiltration 17,123 (7)
Others 1369 (0.5)

The number of sessions per wk (times) 360.5
The time per session (h) 4.0 (3.8–4.0)b

Incident hemodialysis, n (%) 27,230 (10)
Vascular access, n (%)
Arteriovenous fistula 183,330 (70)
Arteriovenous graft 14,110 (5)
Subcutaneously tunneled catheter 46,994 (18)
Temporary internal jugular venous catheterization 12,848 (5)
Others 4345 (2)

Predialysis weight (kg) 58612
Setting of ultrafiltration (L) 2.0 (1.2–2.7)
Use of anticoagulant, n (%)
Heparin 172,023 (66)
Nafamostat mesilate 43,198 (16)
None 46,694 (18)

Setting of blood flow rate (ml/min) 250 (230–280)
Predialysis systolic BP (mm Hg) 139 (121–155)
Predialysis diastolic BP (mm Hg) 73 (65–82)
Predialysis mean arterial pressure (mm Hg) 95 (85–106)
Predialysis heart rate (/min) 75 (66–86)
Blood findings
Hemoglobin (g/dl) 10.4 (9.5–11.2)
Albumin (g/dl) 3.7 (3.1–4.0)
Calcium (mg/dl) 8.9 (8.3–9.4)
Phosphate (mg/dl) 4.4 (3.4–5.4)
Sodium (mmol/L) 137 (135–139)
Potassium (mmol/L) 4.6 (4.1–5.2)

Dialysate findings
Dialysate sodium (mmol/L) 13761.3
Dialysate potassium (mmol/L) 2.560.3
Dialysate calcium (mmol/L) 1.560.1
Dialysate bicarbonate (mmol/L) 33.861.0
Dialysate temperature (°C) 36.760.5

aTotal number of patients was 9292.
bThe mean value was 3.760.6 h per session.
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Figure 3. | Receiver operating characteristic (left) and precision-recall (right) curves for prediction of intradialytic hypotension (IDH). (A)
Prediction of IDH-1. (B) Prediction of IDH-2. (C) Prediction of IDH-3. RNN, recurrent neural network; MLP, multilayer perceptron; LightGBM,
Light Gradient Boosting Machine; LR, logistic regression; AUC, area under the curve.
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except at the early time points (Supplemental Figure 1).
Other baseline characteristics of the hemodialysis sessions
are given in Table 1.

Testing Results
Among 304,720 timestamps of the test set, IDH-1, IDH-2,

and IDH-3 were found in 8%, 31%, and 19%, respectively.
The predicted results for different threshold values (0.1, 0.3,
0.5, 0.7, and 0.9) are presented in confusion matrices
(Supplemental Figure 2). Although the distributions of
normal (i.e., no IDH) and abnormal (i.e., IDH) labels in
IDH-1 and IDH-3 seemed to be imbalanced because of the
low occurrences of IDH-1 (8%) and IDH-3 (19%), the
confusion matrices displayed well-calibrated distributions
according to the thresholds. These results indicated that no
critical classification errors existed. Using the testing data-
set, the area under the receiver operating characteristic
curve for predicting IDH-1 was highest in the recurrent
neural network model (0.94, 95% confidence interval [95%
CI], 0.94 to 0.94), followed by Light Gradient Boosting
machine (0.93; 95% CI, 0.93 to 0.94), multilayer perceptron
(0.93; 95% CI, 0.93 to 0.94), and logistic regression (0.92;
95% CI, 0.92 to 0.92) (all P values were,0.001) (Figure 3A).
The area under the precision-recall curves for predicting
IDH-1 were 0.62 (IQR, 0.61–0.62) in recurrent neural
network, 0.60 (IQR, 0.60–0.60) in multilayer perceptron,
0.60 (IQR, 0.60–0.60) in Light Gradient Boosting Machine,
and 0.56 (IQR, 0.55–0.56) in logistic regression. The area
under the receiver operating characteristic curves and the
area under the precision-recall curves for predicting IDH-2
and IDH-3 were also highest in the recurrent neural
network model compared with their values in the other
machine learning and logistic regression models (Figure 3,
B and C). The area under the curve results for all four
models are summarized in Table 2. Similarly, the F1 scores
in the recurrent neural network model were higher than
those in the other models, irrespective of threshold levels
(Supplemental Table 4).

The recall and precision rates of the recurrent neural
network model were evaluated according to the hemodi-
alysis times (Supplemental Figure 3). When the predicted
probability exceeded a specified operating threshold, the
prediction was considered positive. The predictive recall
and precision rates of IDH were similar throughout the
hemodialysis time, although there was a trade-off between
precisions and recalls after 4 hours.
The decision curve analyses showed that the ratio

between cost and benefit was different depending on the
definition of IDH (Supplemental Figure 4). The net benefit
of the recurrent neural network model was higher than that
of other models, and the logistic regression model had the
poorest benefit compared with the other models.

Calibration of Models
After calibrating models using the calibration dataset,

the results were plotted against the percentage of positive
labels in the buckets using the testing dataset (Supplemental

Table 2. Area under the curves for predicting intradialytic hypotension for the four models used in this study

Outcome Models Area Under the Receiver Operating Characteristic
Curve (95% Confidence Interval)

P
valuea

Area Under the Precision-Recall Curve
(95% Confidence Interval)

IDH-1 RNN 0.94 (0.94 to 0.94) 0.62 (0.61 to 0.62)
MLP 0.93 (0.93 to 0.94) ,0.001 0.60 (0.60 to 0.60)
LightGBM 0.93 (0.93 to 0.94) ,0.001 0.50 (0.59 to 0.60)
LR 0.92 (0.92 to 0.92) ,0.001 0.56 (0.55 to 0.55)

IDH-2 RNN 0.87 (0.87 to 0.87) 0.78 (0.78 to 0.78)
MLP 0.87 (0.86 to 0.87) ,0.001 0.77 (0.77 to 0.78)
LightGBM 0.87 (0.87 to 0.87) 0.001 0.77 (0.77 to 0.78)
LR 0.85 (0.85 to 0.85) ,0.001 0.74 (0.74 to 0.74)

IDH-3 RNN 0.79 (0.79 to 0.79) 0.51 (0.51 to 0.51)
MLP 0.78 (0.78 to 0.79) ,0.001 0.50 (0.50 to 0.50)
LightGBM 0.78 (0.78 to 0.79) ,0.001 0.49 (0.49 to 0.49)
LR 0.76 (0.76 to 0.77) ,0.001 0.46 (0.46 to 0.47)

IDH-1, intradialytic hypotension defined as nadir systolic BP ,90 mm Hg; IDH-2, intradialytic hypotension defined as decrease in
systolic BP$20mmHgand/ordecrease inmeanarterial pressure$10mmHgon thebasis of BPat initial timepoint; IDH-3, intradialytic
hypotension defined as decrease in systolic BP$20mmHg and/or decrease inmean arterial pressure$10mmHg on the basis of BP at
prediction time point. RNN, recurrent neural network, MLP, multilayer perceptron; LightGBM, Light Gradient BoostingMachine; LR,
logistic regression.
aCompared with the receiver operating characteristic curve of RNN model by the Delong test.

Table 3. Expected calibration errors after calibrating the four
models used in this study

Outcomes
Models

RNN (%) MLP (%) LightGBM(%) LR (%)

IDH-1 0.20 0.40 0.32 0.36
IDH-2 0.66 1.45 0.85 1.66
IDH-3 0.43 0.91 0.93 0.51

RNN, recurrent neural network; MLP, multilayer perceptron;
LightGBM, Light Gradient Boosting Machine; LR, logistic re-
gression; IDH-1, intradialytic hypotension defined as nadir
systolic BP ,90 mm Hg; IDH-2, intradialytic hypotension de-
fined as decrease in systolic BP$20 mmHg and/or decrease in
mean arterial pressure $10 mm Hg on the basis of BP at initial
timepoint; IDH-3, intradialytichypotensiondefinedasdecrease
in systolic BP $20 mm Hg and/or decrease in mean arterial
pressure$10mmHgon the basis of BP at prediction time point.
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Figure 5). The corresponding expected calibration errors
of the recurrent neural network model were lower than
those of the other models, except for the IDH-1 predic-
tion (Table 3).

Feature-Set Ablation Analysis
Subsequently, the model performance without each

feature set was measured to ascertain the contribution of
features in developing the recurrent neural network model
(Table 4). When set C (vital signs) was ablated in the model,
the area under the receiver operating characteristic curve
and the area under the precision-recall curve decreased the
most from the baseline model with all features. The
decrease in F1 scores was the largest when set C was
ablated in the model (Supplemental Table 5). The degree of
performance degradation was the next worst when set B
(hemodialysis-related features) was ablated. These data
suggest that time-varying vital signs contributed the most
to the construction of the model, followed by hemodialy-
sis settings.

Feature Ranking Analysis
To estimate the contribution degree of each feature in

predicting the IDH risk, we also performed a feature
ranking analysis. Accordingly, the features that contrib-
uted most to the model performance were time-varying
vital signs and hemodialysis settings (Figure 4).

Subgroup Analysis
We performed the subgroup analysis for the incident

and prevalent hemodialysis, and the model performed
well for both the incident and prevalent sessions

(Supplemental Table 6). We further performed a sub-
group analysis according to the tertiles of the ultrafil-
tration volumes (first tertile, #1.1 kg per session; second
tertile, 1.2–2.1 kg per session; and third tertile, $2.2 kg per
session), and we found that the model performance was
similar between high and low ultrafiltration settings
(Supplemental Table 7).
We also evaluated the model performances in the

sessions with or without the history of IDH. The history
of IDHs within 7 days were 16%, 65%, and 67% using
the IDH-1, IDH-2, and IDH-3 criteria, respectively. Among
the sessions with no previous IDH history within 7 days,
the prevalence of IDH-1, IDH-2, and IDH-3 was 8%,
40%, and 48%, respectively. Irrespective of the IDH histo-
ries, our model successfully predicted the risk of IDH
(Supplemental Table 8).

Sensitivity Analysis
For sensitivity analysis, the recurrent neural network

model was constructed after randomizing sessions, instead
of patients, into training (70%), validation (5%), calibration
(5%), and testing (20%) sets. This was performed to balance
the characteristics of the patients and number of hemodi-
alysis sessions per patient. Despite using this randomiza-
tion method, the recurrent neural network model predicted
IDH in a similar manner as before (Supplemental Table 9).
When the echocardiographic findings including left

ventricular ejection fraction, left ventricular end-diastolic
dimension, left ventricular end-systolic dimension, inter-
ventricular septum thickness, and left ventricular mass
were used as an additional input feature of the recurrent
neural network model (n5227,640; 87% sessions), the IDH
predictability did not improve significantly (Supplemental

Table 4. Performance of the recurrent neural network model after ablation of the feature set

Outcome Models
Area Under the Receiver

Operating Characteristic Curve
(95% Confidence Interval)

D Area Under the
Receiver Operating
Characteristic Curve

Area Under the
Precision-Recall Curve

(95%
Confidence Interval)

D Area Under
the Precision-
Recall Curve

IDH-1 Remove set A 0.94 (0.94 to 0.94) 0 0.62 (0.61 to 0.62) 0
Remove set B 0.93 (0.93 to 0.93) 0.01 0.60 (0.59 to 0.60) 0.02
Remove set C 0.89 (0.89 to 0.89) 0.05 0.44 (0.44 to 0.44) 0.18
Remove set D 0.93 (0.93 to 0.93) 0.01 0.60 (0.60 to 0.61) 0.01
Remove set E 0.94 (0.94 to 0.94) 0.001 0.61 (0.61 to 0.62) 0.002
Remove set F 0.94 (0.94 to 0.94) 0 0.62 (0.61 to 0.62) 0

IDH-2 Remove set A 0.87 (0.87 to 0.87) 0.001 0.78 (0.78 to 0.78) 0.002
Remove set B 0.86 (0.86 to 0.86) 0.01 0.76 (0.76 to 0.76) 0.02
Remove set C 0.73 (0.73 to 0.74) 0.14 0.57 (0.56 to 0.57) 0.22
Remove set D 0.86 (0.86 to 0.86) 0.01 0.77 (0.77 to 0.78) 0.01
Remove set E 0.87 (0.87 to 0.87) 0.001 0.78 (0.78 to 0.78) 0.001
Remove set F 0.87 (0.87 to 0.87) 20.001 0.78 (0.78 to 0.78) 0

IDH-3 Remove set A 0.79 (0.79 to 0.79) 0.001 0.51 (0.51 to 0.51) 0.003
Remove set B 0.77 (0.77 to 0.78) 0.02 0.48 (0.48 to 0.48) 0.03
Remove set C 0.70 (0.70 to 0.71) 0.09 0.38 (0.37 to 0.38) 0.14
Remove set D 0.78 (0.77 to 0.78) 0.01 0.49 (0.49 to 0.49) 0.02
Remove set E 0.79 (0.79 to 0.79) 0.002 0.51 (0.51 to 0.51) 0.003
Remove set F 0.79 (0.79 to 0.79) 0 0.51 (0.51 to 0.51) 0.002

IDH-1, intradialytic hypotension defined as nadir systolic BP ,90 mm Hg; IDH-2, intradialytic hypotension defined as decrease in
systolic BP$20mmHgand/ordecrease inmeanarterial pressure$10mmHgon thebasis of BPat initial timepoint; IDH-3, intradialytic
hypotension defined as decrease in systolic BP$20mmHg and/or decrease inmean arterial pressure$10mmHg on the basis of BP at
prediction time point. Each set contains features as follows: A, age and sex; B, hemodialysis-related features; C, vital signs; D,
comorbidities; E, laboratory findings; and F, medications.
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Figure 4. | Feature rankings for the model predicting intradialytic hypotension (IDH). (A) IDH-1; (B) IDH-2; (C) IDH-3.
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Table 10). This suggests the current routinely monitored
features are sufficient to predict real-time IDH.
We performed an additional sensitivity analysis with

other definitions of IDH: systolic BP ,100 mm Hg within
1 hour (termed IDH-4), and a decrease in systolic BP of
$20 mm Hg or a decrease in mean arterial pressure of
$10 mm Hg from initial BP within 1 hour (termed IDH-5)
(4). The performances of models for the IDH-4 and IDH-5
events are summarized in Supplemental Table 11, and the
recurrent neural network model was still greater than other
models in predicting IDH-4 and IDH-5.

Discussion
Despite the clinical implications of IDH for cardiovas-

cular morbidity and mortality, its prediction is not easy
because several interactive factors, time-varying vital signs,
and hemodialysis settings need be considered. We ad-
dressed this issue using the recurrent neural network
model to consider time-varying features that other machine
learning and conventional logistic regression models can-
not use. The recurrent neural network model was better
than the other tested models at predicting the risk of IDH,
indicating the continuous and real-time prediction of IDH
during hemodialysis may be achievable.
Artificial intelligence, including deep learning, has the

potential to enhance the efficacy and easiness of clinical
pathways. Particularly, unprecedented advances in artifi-
cial intelligence have enabled digital radiologic and path-
ologic imaging diagnosis beyond human limits and
boundaries (19). The application of artificial intelligence
has also grown in the nephrology field, particularly for
predicting AKI. Indeed, the recurrent neural network
model successfully predicted AKI (20), and the results
were more accurate than those obtained using other
machine learning (e.g., gradient boosting machine) (21)
and discrete-time logistic regression (22) models, probably
because of the time-varying features in the recurrent neural
network model.
Although machine learning models have been used to

predict IDH (23–25), these models did not consider time-
varying features such as BPs. We used the recurrent neural
network model to predict IDH because time-varying vital
signs and hemodialysis settings or their trends are known
to strongly affect predictions (26,27). As expected, the
recurrent neural network model performed better than the
other machine learning or logistic regression models tested.
The results of the feature set-ablation analysis and feature
ranking analyses also support the contribution of time-
varying vital signs and hemodialysis settings in construct-
ing the IDH-prediction model.
Some methods to control and reduce the risk of IDH have

been reported (4,28,29), but despite this, IDH still occurs in
approximately 10% of hemodialysis sessions (3). It is impor-
tant to reduce this rate to reduce the risk of cardiovascular
diseases that can develop as a result. Predicting IDH in
advance may help establish an intervention plan. To the best
of our knowledge, there are no artificial intelligence-based
alarm systems for predicting the risk of IDH in real time. The
present models will be implemented in clinical practice as an
alarm service, although external validation is warranted.
Several issues need to be solved before the present model can

be implemented in clinical practice, including digital re-
cording of information, incorporation of monitoring records
into the clinical records, and determining the management
steps if there is risk of IDH. However, the performance
results, feature ranking and feature set-ablation assays, and
subgroup and sensitivity analyses will be a basis of future
studies to overcome these issues.
In this study, the recurrent neural network model

performed better than the other models for differently
defined IDHs and maintained its predictive power in
various subgroups. It suggests the recurrent neural net-
work model could be well applied to various clinical
situations and demands. Because there is a trade-off be-
tween precision and recall, the optimal threshold may
differ depending on clinical demands (e.g., active surveil-
lance with high recall), and changes in threshold values will
alter the predictive capacity of the model.
Despite the promising results, certain limitations need to

be considered. Machine learning models, including deep
learning, are black boxes, which makes it difficult to
understand how predictions are arrived at, and how
much each variable or timestamp contributes to the results.
Nevertheless, our feature set-ablation analysis may be able
to provide underlying clues and an intervention strategy
for IDH. The study design was retrospective, so the results
produced by the recurrent neural network model may
change depending on the characteristics of the dataset used
(30). Unidentified factors such as cardiac monitoring (e.g.,
cardiac arrhythmia), dialysis vintage, and medical records
(e.g., written notes) may provide additional information on
the risk of IDH and further improve the model’s perfor-
mance. Dialysis settings may differ between countries and
populations, which will limit the application of the present
models to other patient subsets. The difference in charac-
teristics between patients included and excluded in anal-
yses may also limit the model applicability. Regarding this
issue, we provide the framework of the models in the
Supplemental Methods. This will be helpful in adjusting
the models according to the population characteristics,
although this needs to be validated in future and inde-
pendent cohorts.
Until now, the risk of IDH has been difficult to estimate.

Our results suggest real-time prediction of IDH may be
possible using a deep learning model, and the application
of such a model could enable clinicians to cope with IDH
earlier than before. This approach will have a positive effect
in all hemodialysis situations, and will be especially useful
in small hospitals that have small doctor numbers and
during home hemodialysis. These results may motivate
researchers to apply deep learning models to predict other
outcomes of hemodialysis.
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Ramakrishnan K, Jensen DE, Stålhammar NO: Intradialytic hy-
potension and risk of cardiovascular disease. Clin J Am Soc
Nephrol 9: 2124–2132, 2014

2. Flythe JE, Xue H, Lynch KE, CurhanGC, Brunelli SM: Association
of mortality risk with various definitions of intradialytic hypo-
tension. J Am Soc Nephrol 26: 724–734, 2015

3. Kuipers J,VerboomLM, IpemaKJR, PaansW,KrijnenWP,Gaillard
CAJM, Westerhuis R, Franssen CFM: The prevalence of intra-
dialytic hypotension in patients on conventional hemodialysis: A
systematic reviewwithmeta-analysis.AmJNephrol49:497–506,
2019

4. SantoroA,Mancini E,BasileC,AmorosoL,DiGiulioS,UsbertiM,
Colasanti G, Verzetti G, Rocco A, Imbasciati E, Panzetta G,
Bolzani R, Grandi F, Polacchini M: Blood volume controlled
hemodialysis in hypotension-prone patients: A randomized,
multicenter controlled trial. Kidney Int 62: 1034–1045, 2002

5. Sands JJ, Usvyat LA, Sullivan T, Segal JH, Zabetakis P, Kotanko P,
MadduxFW,Diaz-Buxo JA: Intradialytichypotension: Frequency,
sources of variation and correlation with clinical outcome. He-
modial Int 18: 415–422, 2014

6. Davenport A, Cox C, Thuraisingham R: Blood pressure control
and symptomatic intradialytic hypotension in diabetic haemo-
dialysis patients: A cross-sectional survey. Nephron Clin Pract
109: c65–c71, 2008

7. Koomans HA, BraamB, Geers AB, Roos JC, DorhoutMees EJ: The
importance of plasma protein for blood volume and blood
pressure homeostasis. Kidney Int 30: 730–735, 1986

8. Rocha A, Sousa C, Teles P, Coelho A, Xavier E: Frequency of in-
tradialytichypotensiveepisodes:Oldproblem,new insights. J Am
Soc Hypertens 9: 763–768, 2015

9. Reeves PB, Mc Causland FR: Mechanisms, clinical implications,
and treatment of intradialytichypotension.Clin J AmSocNephrol
13: 1297–1303, 2018

10. National Kidney Foundation: KDOQI clinical practice guideline
for hemodialysis adequacy: 2015 update [published correction
appears in Am J Kidney Dis 67: 534, 2016]. Am J Kidney Dis 66:
884–930, 2015

11. BurlacuA, IfteneA,Busoiu E,CogeanD,CovicA:Challenging the
supremacy of evidence-based medicine through artificial in-
telligence: The timehas come for a change of paradigms.Nephrol
Dial Transplant 35: 191–194, 2020

12. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521:
436–444, 2015

13. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M,
Chou K, Cui C, Corrado G, Thrun S, Dean J: A guide to deep
learning in healthcare. Nat Med 25: 24–29, 2019

14. Kooman J, Basci A, Pizzarelli F, Canaud B, Haage P, Fouque D,
Konner K, Martin-Malo A, Pedrini L, Tattersall J, Tordoir J,
VennegoorM,WannerC, terWeeP,VanholderR: EBPGguideline
on haemodynamic instability.Nephrol Dial Transplant 22[Suppl
2]: ii22–ii44, 2007

15. K/DOQI Workgroup: K/DOQI clinical practice guidelines for
cardiovascular disease in dialysis patients. Am J Kidney Dis 45
[Suppl 3]: S1–S153, 2005

16. Hochreiter S, Schmidhuber J: Long short-term memory. Neural
Comput 9: 1735–1780, 1997

17. Platt JC: Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In: Advances in
Large Margin Classifiers, edited by Smola A, Bartlett P, Scholkopf
B, Schuurmans D, Cambridge, MIT Press, 1999, pp 61–74

18. Ginley B, Lutnick B, Jen KY, Fogo AB, Jain S, Rosenberg A,
Walavalkar V, Wilding G, Tomaszewski JE, Yacoub R, Rossi GM,
Sarder P: Computational segmentation and classification of di-
abetic glomerulosclerosis. J Am Soc Nephrol 30: 1953–1967,
2019

19. Niazi MKK, Parwani AV, Gurcan MN: Digital pathology and ar-
tificial intelligence. Lancet Oncol 20: e253–e261, 2019
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red blood cells], dialysate [e.g., Hemo B Dex 0.1% and 0.15%, and Hemotrate-B1] and dialyzer 

[e.g.,  APS-15U,  APS-21U,  Rexeed-13LX,  Rexeed-18LX,  BLS  812G,  BLS  812SD, BLS 

814SD, BLS 816SD, BLS 819SD, NC 1485, PHF0714, SG30, Adsorba, polyflux 14, polyflux 

14H, polyflux 14L, polyflux 14S, polyflux 170H, polyflux 17L, polyflux 17S, polyflux 6H, 

polyflux 8L, polyflux S, Theranova 400, F4 HPS, F5 HPS, F6 HPS, FX, FX paed, FX5, FX8, 

FX40, FX50, FX80, FB 130T, and Sureflux 130E-GA]), the dialysate temperature and 

concentrations of sodium, potassium, calcium, and bicarbonate, incident or prevalent sessions, 

admission status, the presence of comorbidities (e.g., diabetes mellitus, hypertension, 

cardiovascular disease, and kidney transplantation), the number of session per week, the history 

of IDH within one week, total number of sessions with IDH within one week, and medications 

used before initiating hemodialysis. Laboratory blood findings were measured at the beginning 

of the hemodialysis sessions, including white blood cells, hemoglobin, platelet, cholesterol, 

albumin, glucose, calcium, phosphate, uric acid, blood urea nitrogen, creatinine, sodium, 
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potassium, chloride, and total carbon dioxide. There were no missing variables. 

 
Echocardiographic information before hemodialysis sessions including left ventricular 

ejection fraction, left ventricular end-diastolic dimension, left ventricular end-systolic 

dimension, interventricular septum thickness, and left ventricular mass was available for 

227,640 (87%) sessions and 7256 (78%) patients. This information was used in a sensitivity 

analysis. 

 

Model development 

 
Statistical analyses were performed using R software (version 3.5.1; The Comprehensive 

R Archive Network: http://cran.r-project.org) and Python (version 3.6.8; Python Software 

Foundation: http://www.python.org). The PyTorch 1.3 was used as a deep learning framework 

throughout this process (1). 

The categorical and continuous variables of the baseline characteristics are presented as 

proportions and means ± standard deviation, respectively. The dataset was treated as follows: 

S = [(x1,1, y1,1), …, (x1,L1, y1,L1), (x2,1, y2,1), …, (xd,Ld, yd,Ld)], where d and Ld indicate 

the number of dialysis cases and the frame number of the dth dialysis, respectively. The ground 

truth labels were denoted as yp,q = [yp,q,IDH-1, yp,q,IDH-2(initial), yp,q,IDH-2(present)], 

where 0 was normal and 1 was abnormal (i.e., IDH). When converting the data in the training 

dataset into vectors, the continuous features were standardized with a mean of 0 and a variance 

of 1, and the categorical features were transformed into binary variables (i.e. 0 or 1) by one- 

hot encoding. The dataset S was used as the training data to train the recurrent neural network, 

multilayer perceptron, Light Gradient Boosting Machine, and logistic regression models. 

Binary cross-entropy loss was used as the loss function for the recurrent neural network to 
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Pseudocode 1: Predicting IDH Using recurrent neural network Evaluation 

1 Function IDH-prediction (Trained Network, 𝑋𝑝,1:𝐿𝑝, 𝜎) 

Input: Trained Network: BatchNorm, RNN, MLP-1, MLP-2, MLP-3; 

𝜎: logistic function; 

𝑋𝑝,1:𝐿𝑝= (𝑥1, 𝑥2, … , 𝑥𝐿𝑝): entries of p-th dialysis of test data; 

Output :  �̂�𝑝,1:𝐿𝑝 
= [(�̂�1,𝐼𝐷𝐻−1,  �̂�1,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡),  �̂�1,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡)) , … , 

(�̂�𝐿𝑝,𝐼𝐷𝐻−1,  �̂�𝐿𝑝,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡),  �̂�𝐿𝑝,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡))] : predictions for p-th dialysis 

2 Timestamp index t ← 1 

3 for t =1 to 𝐿𝑝: 

4 𝑥𝑡,𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚 ← BatchNorm(𝑥𝑡) 

5 ℎ𝑡 ← RNN (𝑥𝑡,𝑏𝑎𝑡𝑐ℎ𝑟𝑛𝑜𝑚, ℎ𝑡−1) 

6 �̂�𝑡,𝐼𝐷𝐻−1  ←  𝜎( MLP-1(ℎ𝑡) ) 

7 �̂�𝑡,IDH−2(init)   ←  𝜎( MLP-2(ℎ𝑡) ) 

8 �̂�𝑡,IDH−3(present)   ←  𝜎( MLP-3(ℎ𝑡) ) 

9 t ← t+1 

10 

11 𝑦𝑝,1:𝐿𝑝= [(𝑦1,𝐼𝐷𝐻−1, 𝑦1,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡), 𝑦1,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡)) , … , (𝑦𝐿𝑝,𝐼𝐷𝐻−1, 

𝑦𝐿𝑝,𝐼𝐷𝐻−2(𝑖𝑛𝑖𝑡), 𝑦𝐿𝑝,𝐼𝐷𝐻−3(𝑝𝑟𝑒𝑠𝑒𝑛𝑡))]: ground truth labels of p-th dialysis 

calculate the difference between actual labels and predictions. We used the Adam optimization 

method as the optimizer (2). The pseudocode for the recurrent neural network is given below. 
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12 Quantitative evaluation using the actual labels  𝑦𝑝,1:𝐿𝑝    and the prediction  �̂�𝑝,1:𝐿𝑝 

 
 

RNN, recurrent neural network; MLP, multilayer perceptron 

 

 

The multilayer perceptron algorithm consists of a series of non-linear functions and fully- 

connected layers that are affine transforms as follows: ŷp,q = σn°fn°σn-1°fn-1°…°σ1°f1(xp,q) 

(3). The σj is the jth non-linear function (e.g., σj (x) = max (0, x)) and the fj is the jth fully- 

connected layer (i.e., affine transform). Throughout this calculation, the multilayer perceptron 

can extract meaningful information on higher dimensions of the input vector. For a probability 

model, the last σn is a logistic function. The binary cross-entropy loss and the Adam 

optimization methods were used (2). The architecture of the multilayer perceptron is shown 

below. 

 

 

Layer Shape 

BatchNorm 260 (input feature size) 

Fully connected layer + ReLU 260 × 256 

Fully connected layer + BatchNorm + ReLU 256 × 256 

Fully connected layer + ReLU 256 × 256 

Fully connected layer + ReLU 256 × 256 

Fully connected layer 256 × 3 

Logistic function 3 

 
 

BatchNorm, batch normalization; ReLU, rectified linear unit 
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Light Gradient Boosting Machine combines learned ‘Learners’ after learning several weak 

‘Learners’ (4). Throughout the learning and predicting process for weak ‘Learners’, the error 

is lowered by gradient boosting on residuals of incorrectly predicted results. The Light Gradient 

Boosting Machine method is faster than the other Gradient Boosting Machine methods such as 

extreme gradient boosting (4). Logistic regression calculates the weighted sum of the feature 

vector that is derived from regression coefficients and feature values. 

 

Feature ranking analysis 

 

To estimate how much features contribute to the prediction of IDH, we use the feature 

ranking method proposed in the previous paper (5). This method drops each feature one by one 

from the test dataset when the model inference and compares the prediction results to the 

reference prediction result which is gained without losing any features. Large prediction 

differences between dropped data and full-featured data represent that the dropped features 

have contributed much more when the model makes predictions. 

1 𝑁 

𝑠𝑐𝑜𝑟𝑒𝑓𝑑𝑟𝑜𝑝 = ∑ |𝑝𝑖,𝑓𝑑𝑟𝑜𝑝 − 𝑝𝑖| 
𝑖=1 

. . . (𝐴) 

 

To apply this feature ranking method to our approach, we modify it to suit our settings as 

shown in equation (A). In eq (A), 𝑓𝑑𝑟𝑜𝑝 is the feature we focus on and drop from the input data. 

𝑝𝑖 means the reference prediction result of the i-th data which the model inferences using all 

features and 𝑝𝑖,𝑓𝑑𝑟𝑜𝑝 means that the prediction result of the i-th data when the feature 𝑓𝑑𝑟𝑜𝑝 is 

dropped. These absolute values are averaged over all dataset of size N. The scores were 

calculated for IDH-1, IDH-2, and IDH-3 respectively. 

The batch norm layer serves as a standardization. To drop each feature, we have set each 

 

output of the batch norm layer as 0. The prediction result may be higher or lower than reference 

𝑁 
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prediction, however, to measure the degree of difference between dropped feature data and full 

featured data we average the absolute value of differences. 
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Supplemental Table 1. Characteristics of hemodialysis sessions that were included and 

excluded from the analyses 

Variables 
Excluded 

(n = 20,752) 
Included 

(n = 261,647) 

Age (years) 19 ± 20 62 ± 15 

Male (%) 58 58 

Diabetes mellitus (%) 15 48 

Hypertension (%) 57 68 
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Supplemental Table 2. Description of the four models used in the present study 

 

Models Descriptions Comparison with other models 

 
 

Logistic 

regression 

Output the probability of a certain 

event happening by using a linear 

classifier followed by a logistic 

function. It is able to model the linear 

relationship between the input 
features and the target. 

 
 

No inherent way of modeling 

temporal information 

 

Light 

Gradient 

Boosting 

Machine 

 

Composed of ensemble of tree-based 

models. It is able to make accurate 

predictions by iteratively boosting the 

errors of individual models. 

Able to compute feature importance 

of the input data 

Able to model non-linear 

relationships 
No inherent way of modeling 

temporal information 

 
 

Multilayer 

perceptron 

A class of deep neural network that 

can model complex relationships by 

using multiple hidden layers. Similar 

to above methods, only fixed-size 

input is taken. 

No explicit way of computing 

feature importance (black-box 

model). Feature selection method 

should be applied. 

No inherent way of modeling 

temporal information 

 
Recurrent 

neural 

network 

A class of deep neural network that 

assumes sequential data as inputs 

with temporal relationship. It does 

this by continuously utilizing 

previous sequences for predicting the 
target of current sequence. 

Inherently models input 

sequentially 

No explicit way of computing 

feature importance (black-box 

model). Feature selection method 

should be applied. 
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Supplemental Table 3. Summarized table of feature sets of the model input 
 

 
 

Feature sets Variables 

A (age and sex) Age and sex 

 

 

B (hemodialysis-related 

features) 

Type of hemodialysis, dialysate flow rate, blood flow rate, 

target and time-varying amounts of ultrafiltration, target 

ultrafiltration, time setting, vascular access route, pre- 

dialysis weight, anti-coagulants, priming fluids, dialyzer 

type, dialysate sodium concentration, dialysate potassium 

concentration, dialysate calcium concentration, dialysate 

bicarbonate concentration, dialysate temperature, and 
incident or prevalent hemodialysis. 

C (vital signs) 
Systolic blood pressure, diastolic blood pressure, heart rate, 
and body temperature. 

 
D (clinical information) 

Diabetes mellitus, hypertension, cardiovascular disease, 

kidney transplant donor, kidney transplant recipient, number 

of dialysis session per week, previous history of IDH within 
7 days, and total number of sessions with IDH within 7 days. 

 
E (laboratory findings) 

White blood cell count, hemoglobin, platelet, cholesterol, 

albumin, glucose, calcium, phosphate, uric acid, blood urea 

nitrogen, creatinine, sodium, potassium, chloride, and 
bicarbonate. 

 

 

F (medications) 

Beta-blockers, calcium channel blockers, angiotensin- 

converting enzyme inhibitors, aldosterone receptor blockers, 

diuretics, lipid-lowering agents, minoxidil, aspirin, 

adenosine diphosphate receptor inhibitors, warfarin, oral 

hypoglycemic agents, insulin, allopurinol, febuxostat, 

erythropoietin-stimulating agents, calcium-based phosphate 

binder, and non-calcium-based phosphate binders. 
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Supplemental Table 4. F1 score for predicting intradialytic hypotension in deep and other 

machine learning, and logistic regression models 

   Outcome  

Threshold Models IDH-1 IDH-2 IDH-3 

0.1 RNN 0.5028 0.6116 0.4391 

 MLP 0.5096 0.6114 0.4391 

 LightGBM 0.5025 0.6127 0.4301 

 LR 0.4788 0.5754 0.4102 

0.3 RNN 0.5844 0.6950 0.4981 

 MLP 0.5717 0.6916 0.4846 

 LightGBM 0.5759 0.6963 0.4800 

 LR 0.5498 0.6763 0.4484 

0.5 RNN 0.5197 0.6732 0.3682 

 MLP 0.4765 0.6637 0.3522 

 LightGBM 0.4912 0.6702 0.3186 

 LR 0.4523 0.6271 0.2612 

0.7 RNN 0.3542 0.5631 0.1714 

 MLP 0.2829 0.5479 0.1685 

 LightGBM 0.3002 0.5589 0.0961 

 LR 0.2546 0.4873 0.0829 

0.9 RNN 0.1275 0.3357 0.0163 

 MLP 0.0706 0.3120 0.0102 

 LightGBM 0.0367 0.2689 0.0014 

 LR 0.0454 0.2547 0.0071 

 
 

IDH-1, intradialytic hypotension defined as nadir systolic blood pressure <90 mmHg; IDH-2, 

intradialytic hypotension defined as decrease in systolic blood pressure ≥20 mmHg and/or 

decrease in mean arterial pressure ≥10 mmHg based on blood pressure at initial time point; 

IDH-3, intradialytic hypotension defined as decrease in systolic blood pressure ≥20 mmHg 

and/or decrease in mean arterial pressure ≥10 mmHg based on blood pressure at prediction 
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time point. 

 

BP, blood pressure; RNN, recurrent neural network, MLP, multilayer perceptron; LightGBM, 

Light Gradient Boosting Machine; LR, logistic regression. 
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Supplemental Table 5. F1 scores of the recurrent neural network after ablation of the feature set 

 
   Outcome  

Threshold Models IDH-1 IDH-2 IDH-3 

0.1 Remove set A 0.5051 0.6066 0.4366 

 Remove set B 0.5002 0.5950 0.4174 

 Remove set C 0.4140 0.5086 0.3683 

 Remove set D 0.4965 0.6133 0.4321 

 Remove set E 0.5043 0.6072 0.4317 

 Remove set F 0.5041 0.6103 0.4354 

0.3 Remove set A 0.5818 0.6918 0.4983 

 Remove set B 0.5700 0.6836 0.4766 

 Remove set C 0.4413 0.5592 0.3716 

 Remove set D 0.5733 0.6896 0.4813 

 Remove set E 0.5809 0.6943 0.4972 

 Remove set F 0.5834 0.6948 0.4965 

0.5 Remove set A 0.5129 0.6762 0.3705 

 Remove set B 0.4760 0.6594 0.3266 

 Remove set C 0.2851 0.4156 0.1161 

 Remove set D 0.5120 0.6560 0.3315 

 Remove set E 0.5028 0.6697 0.3569 
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 Remove set F 0.5154 0.6739 0.3630 

0.7 Remove set A 0.3438 0.5697 0.1614 

 Remove set B 0.2991 0.5270 0.1257 

 Remove set C 0.1018 0.1605 0.0122 

 Remove set D 0.3652 0.5340 0.1286 

 Remove set E 0.3328 0.5538 0.1454 

 Remove set F 0.3471 0.5647 0.1657 

0.9 Remove set A 0.1190 0.3358 0.0105 

 Remove set B 0.0880 0.2398 0.0051 

 Remove set C 0.0064 0.0046 0.0000 

 Remove set D 0.1381 0.3119 0.0068 

 Remove set E 0.1119 0.3264 0.0095 

 Remove set F 0.1263 0.3295 0.0154 

 
 

IDH-1, intradialytic hypotension defined as nadir systolic blood pressure <90 mmHg; IDH-2, intradialytic hypotension defined as decrease in 

systolic blood pressure ≥20 mmHg and/or decrease in mean arterial pressure ≥10 mmHg based on blood pressure at initial time point; IDH-3, 

intradialytic hypotension defined as decrease in systolic blood pressure ≥20 mmHg and/or decrease in mean arterial pressure ≥10 mmHg based 

on blood pressure at prediction time point. 

Each set contains features as follows: A, age and sex; B, hemodialysis-related features; C, vital signs; D, comorbidities; E, laboratory findings; 
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and F, medications. 
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Supplemental Table 6. Area under the curves for predicting intradialytic hypotension in 

incidence and prevalent hemodialysis sessions 

Outcomes Groups AUROC (95% CI) AUPRC (95% CI) 

IDH-1 Incident 0.944 (0.941–0.947) 0.652 (0.650–0.653) 

 Prevalent 0.936 (0.935–0.938) 0.610 (0.608–0.612) 

IDH-2 Incident 0.872 (0.868–0.876) 0.783 (0.781–0.784) 

 Prevalent 0.869 (0.868–0.871) 0.780 (0.779–0.782) 

IDH-3 Incident 0.772 (0.766–0.777) 0.473 (0.471–0.475) 

 Prevalent 0.792 (0.790–0.795) 0.516 (0.515–0.518) 

 
 

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension. 
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Supplemental Table 7. Area under the curves for predicting intradialytic hypotension according 

to the tertiles of ultrafiltration 

Outcomes Ultrafiltration AUROC (95% CI) AUPRC (95% CI) 

IDH-1 1st tertile 0.951 (0.948–0.953) 0.667 (0.665–0.668) 

 2nd tertile 0.935 (0.932–0.937) 0.593 (0.591–0.594) 

 3rd tertile 0.926 (0.924–0.929) 0.590 (0.588–0.592) 

IDH-2 1st tertile 0.870 (0.868–0.872) 0.745 (0.744–0.747) 

 2nd tertile 0.874 (0.872–0.876) 0.789 (0.787–0.790) 

 3rd tertile 0.862 (0.860–0.864) 0.799 (0.797–0.800) 

IDH-3 1st tertile 0.788 (0.784–0.792) 0.477 (0.475–0.479) 

 2nd tertile 0.799 (0.796–0.803) 0.525 (0.523–0.527) 

 3rd tertile 0.780 (0.777–0.784) 0.525 (0.523–0.526) 

 

 
AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension. 
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Supplemental Table 8. Area under the curves for predicting intradialytic hypotension based on 

a history of intradialytic hypotension 

Outcomes History of IDH AUROC (95% CI) AUPRC (95% CI) 

IDH-1 Absent 0.938 (0.936–0.941) 0.502 (0.500–0.504) 

 Present 0.860 (0.857–0.863) 0.664 (0.662–0.665) 

IDH-2 Absent 0.884 (0.881–0.886) 0.748 (0.746–0.749) 

 Present 0.858 (0.856–0.860) 0.791 (0.789–0.792) 

IDH-3 Absent 0.792 (0.788–0.796) 0.446 (0.445–0.448) 

 Present 0.784 (0.781–0.786) 0.528 (0.526–0.530) 

 

IDH, intradialytic hypotension; AUROC, area under the receiver operating characteristic curve; 

CI, confidence interval; AUPRC, area under the precision-recall curve. 
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Supplemental Table 9. Performance of the recurrent neural network model after using sessions- 

stratified randomization 

Outcome AUROC (95% CI) AUPRC (95% CI) 

IDH-1 0.943 (0.941–0.944) 0.659 (0.657–0.661) 

IDH-2 0.877 (0.876–0.878) 0.788 (0.787–0.789) 

IDH-3 0.793 (0.791–0.794) 0.508 (0.506–0.510) 

 
 

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension. 
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Supplemental Table 10. Performance of the recurrent neural network model in sessions with and without echocardiographic information 

 

Model without echocardiographic information Model with echocardiographic information 

Outcomes AUROC (95% CI) AUPRC (95% CI) AUROC (95% CI) AUPRC (95% CI) 

IDH-1 0.938 (0.936–0.939) 0.643 (0.642–0.645) 0.938 (0.936–0.939) 0.643 (0.642–0.645) 

IDH-2 0.875 (0.874–0.876) 0.783 (0.781–0.784) 0.875 (0.873–0.876) 0.782 (0.781–0.784) 

IDH-3 0.800 (0.797–0.802) 0.522 (0.521–0.524) 0.799 (0.797–0.801) 0.522 (0.520–0.524) 

 
 

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; AUPRC, area under the precision-recall curve; IDH, 

intradialytic hypotension. 
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Supplemental Table 11. Area under the curves for predicting the differently defined 

intradialytic hypotension 

Outcomes Models AUROC (95% CI) P value AUPRC (95% CI) 

IDH-4 RNN 0.930 (0.929–0.932)  0.742 (0.740–0.744) 

 MLP 0.928 (0.926–0.929) <0.001 0.731 (0.729–0.732) 

 LightGBM 0.928 (0.927–0.929) <0.001 0.731 (0.730–0.733) 

 Logistic regression 0.916 (0.914–0.917) <0.001 0.694 (0.692–0.696) 

IDH-5 RNN 0.888 (0.887–0.890)  0.724 (0.722–0.726) 

 MLP 0.884 (0.882–0.885) <0.001 0.715 (0.714–0.717) 

 LightGBM 0.887 (0.885–0.888) <0.001 0.715 (0.714–0.717) 

 Logistic regression 0.872 (0.871–0.874) <0.001 0.687 (0.685–0.688) 

 
AUROC, area under the receiver operating characteristic curve; CI, confidence interval; 

AUPRC, area under the precision-recall curve; IDH, intradialytic hypotension; RNN, recurrent 

neural network, MLP, multilayer perceptron; LightGBM, Light Gradient Boosting Machine; 

LR, logistic regression. 
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Supplemental Figure 1. Exploratory data analysis of the rate of intradialytic hypotension (IDH). 
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Supplemental Figure 2. Confusion matrix plot for (A) IDH-1, (B) IDH-2, and (C) IDH-3. The case numbers are given in each cell. 

(A) 

 
(B) 
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(C) 
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Supplemental Figure 3. Precision-recall graph according to the hemodialysis time. The data 

output thresholds were set as 0.1, 0.3, 0.5, 0.7, and 0.9. (A) IDH-1. (B) IDH-2. (C) IDH-3.  

(A) 
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(C) 
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Supplemental Figure 4. Decision curve analysis of recurrent neural network (RNN) and three 

other models. (A) Intradialytic hypotension (IDH)-1. (B) IDH-2. (C) IDH-3. MLP, multilayer 

perceptron; LightGBM, Light Gradient Boosting Machine; LR, logistic regression. 

(A) 
 

 

 

 

(B) 
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Supplemental Figure 5. Platt scaling plot used to calibrate the models. (A) Intradialytic 

hypotension (IDH)-1. (B) IDH-2. (C) IDH-3. Bin size = 0.05. RNN, recurrent neural network; 

MLP, multilayer perceptron; LightGBM, Light Gradient Boosting Machine; LR, logistic 

regression. 

(A) 
 

 

 
(B) 
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(C) 
 
 


