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Abstract

Background

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for

improving the motor symptoms of advanced Parkinson’s disease (PD). Accurate positioning

of the stimulation electrodes is necessary for better clinical outcomes.

Objective

We applied deep learning techniques to microelectrode recording (MER) signals to better

predict motor function improvement, represented by the UPDRS part III scores, after bilat-

eral STN DBS in patients with advanced PD. If we find the optimal stimulation point with

MER by deep learning, we can improve the clinical outcome of STN DBS even under restric-

tions such as general anesthesia or non-cooperation of the patients.

Methods

In total, 696 4-second left-side MER segments from 34 patients with advanced PD who

underwent bilateral STN DBS surgery under general anesthesia were included. We trans-

formed the original signal into three wavelets of 1–50 Hz, 50–500 Hz, and 500–5,000 Hz.

The wavelet-transformed MER was used for input data of the deep learning. The patients

were divided into two groups, good response and moderate response groups, according to
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DBS on to off ratio of UPDRS part III score for the off-medication state, 6 months postopera-

tively. The ratio were used for output data in deep learning. The Visual Geometry Group

(VGG)-16 model with a multitask learning algorithm was used to estimate the bilateral effect

of DBS. Different ratios of the loss function in the task-specific layer were applied consider-

ing that DBS affects both sides differently.

Results

When we divided the MER signals according to the frequency, the maximal accuracy was

higher in the 50–500 Hz group than in the 1–50 Hz and 500–5,000 Hz groups. In addition,

when the multitask learning method was applied, the stability of the model was improved in

comparison with single task learning. The maximal accuracy (80.21%) occurred when the

right-to-left loss ratio was 5:1 or 6:1. The area under the curve (AUC) was 0.88 in the

receiver operating characteristic (ROC) curve.

Conclusion

Clinical improvements in PD patients who underwent bilateral STN DBS could be predicted

based on a multitask deep learning-based MER analysis.

Introduction

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective way to improve

motor complications in advanced Parkinson disease (PD) [1]. The definition and targeting of

the STN has been improved due to advances in magnetic resonance imaging (MRI) resolution

[2]. While brain shifting and intrinsic inaccuracies in frame-based targeting are still obstacles,

intraoperative signal analyses from microelectrode recording (MER) are usually performed

[3]. Although papers have classified and analyzed MER signals and correlated them with clini-

cal outcomes [4–6], no studies have analyzed MER signals using deep learning with the clinical

outcomes of patients with advanced PD after STN DBS.

Deep learning is a machine learning method that allows for learning features of input data.

Among the machine learning methods, convolutional neural network (CNN) models can pro-

cess signals using imaging processing methods. In medical applications, CNN is used for ana-

lyzing medical data such as X-ray, MRI, CT images and fundoscopy [7–10]. In signal

processing, CNN methods are used for several cases [11, 12]. Converting a signal to an image

with wavelet transformation is an effective way to extract features. High-frequency signals can

be reduced to a single size of the image regardless of the size of the original signal.

In this study, we analyzed outcome-guided deep learning-based prediction of motor func-

tion improvement after bilateral STN DBS in PD patients. We transformed MER signals to the

wavelet domain, which has a time axis, and compared them with the Unified Parkinson’s Dis-

ease Rating Scale (UPDRS) part III scores of patients with advanced PD at 6 months after STN

DBS. We investigated the ranges of the MER signal bands and the optimal deep learning algo-

rithm, by which the clinical outcome of motor function improvement is better predicted in

patients with advanced PD after bilateral STN DBS. The ability to recommend the optimal

lead insertion location through MER signals in the operating room would be of great help to

less experienced neurosurgeons. We could improve the outcome even under restrictions such

as general anesthesia or noncooperation of the patients. In addition, discovering new findings

that have not been found by conventional waveform analysis methods may be possible.
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Methods

Subjects

Forty-four patients with advanced PD who underwent bilateral STN DBS with MER under

general anesthesia between 2014 and 2017 were included in this study. Six patients who had

missing clinical data and four patients who had two active contacts of an electrode at 6 months

after STN DBS were excluded. The clinical information of all patients was retrospectively

reviewed. The UPDRS scores of every patient were evaluated preoperatively and at 6 months

after surgery by experienced neurologists. The clinical evaluation of the UPDRS scores was

performed under two conditions: off-medication (when the patients had taken no medications

for 8 to 12 hours) and on-medication (when the patients had experienced maximal clinical

benefit 1 to 3 hours after the usual morning dose of a dopaminergic treatment) before and at 6

months after STN DBS. However, in this study only the off-medication status was included.

MER was performed at 1-mm intervals from 10 mm to 5 mm above the target and at 0.5-mm

intervals from 5 mm above to 5 mm below the target. As the lead contacts are 1.5 mm long

and MER was performed at intervals of 0.5 mm, the three MER signals were inevitably

matched to the same clinical outcome as the input and output values in the deep learning

model. When the lead stimulation depth contact was changed at 6 months after surgery, the

MER signal of the depth thought to have been stimulated was selected.

Surgical procedure

The surgical procedure was similar to that reported in previous studies [13, 14]. Anti-Parkin-

sonian medications were not stopped preoperatively. A stereotactic Leksell G frame (Elekta)

was mounted on the head under local anesthesia. A 1.5 T brain MRI was performed (General

Electric Medical Systems). The 3-D fast spoiled gradient-echo (FSPGR) sequence was used for

anterior commissure (AC)–posterior commissure (PC) calculations. T2 spin-echo images

were obtained to define the boundaries of the STN. SurgiPlan (Elekta) was used to run the sim-

ulations for targeting the sensorimotor region of the STN and selecting the trajectories. MERs

were performed by means of a Leadpoint system (Medtronic) under general anesthesia. The

depth of sedation was monitored by the bispectral index under total intravenous anesthesia

with propofol and remifentanil. The propofol concentration was titrated to maintain the bis-

pectral index value of 60–80. Permanent model 3389 (Medtronic) quadripolar electrodes were

implanted along the proper trajectory to stimulate more sensorimotor regions of the STN,

which was localized by both preoperative brain MRI and intraoperative MER. Left DBS was

performed first, followed by right DBS. Programmable pulse generators (Medtronic) were

implanted in the subclavicular region and connected to the electrodes.

Microelectrode recordings

We obtained the signal using a five-array microdrive. Each MER signal was filtered at 0.2–

5,000 Hz (4 seconds). The signal was recorded through the Leadpoint output board (Medtro-

nic) with a sampling rate of 48 KHz (gain: 1,000). The signal was stored using Spike2 (Cam-

bridge Electronic Design Limited).

The MER signals for the deep learning algorithm were selected from the determined final

DBS trajectory. Finally, the recorded MER signal was selected from the active contact point at 6

months after DBS. As the contact surface span was 1.5 mm and MER was performed at intervals

of 0.5 mm, the three MER signals were inevitably matched to one clinical outcome value in the

deep learning algorithm. We analyzed only the left MER signals as input data for the deep

CNN. In total, 696 MER segments from 34 PD patients who underwent bilateral STN DBS
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surgery under general anesthesia were included in this study. The datasets of thirty patients

were assigned to the training set, and those of four patients were assigned to the test set.

Wavelet transformation

Several ways to visualize signals, such as using a short-time Fourier transform (STFT) and a

wavelet transform, are possible [15]. By visualizing the signal, one can see which signal is dom-

inant in the frequency domain. The wavelet transform is a well-known approach in time-fre-

quency analyses such as MER. It was originally developed for seismic signal processing [16],

but it is also used for neural spike-train composition [17]. Compared with Fourier transforma-

tions, wavelet transformations can reach the optimal time-frequency resolution due to an

unfixed window size [18]. In general, a recurrent neural network (RNN) can analyze sequential

or time series signals. However, using an RNN is difficult due to the lack of memory in the cell

to analyze MERs because the sampling rate is high (sampling rate of a few kHz). In a wavelet

analysis, a large sampling rate signal can be reduced to a few kilobytes of signal. We trans-

formed the original signal into three wavelets of 1–50 Hz, 50–500 Hz, and 500–5,000 Hz.

Finally, a 50~500 Hz wavelet with a time and frequency resolution of 8 was used. A continuous

wavelet transform of signal s(t) is defined by

CWTða;bÞ sðtÞf g ¼
1
ffiffiffiffiffi
jaj

p
R1
� 1

sðtÞC�
t � b
a

� �

dt

(T: time, a: scale parameter, b: translational parameter, C: analyzing wavelet, and �: conju-

gate function) [19].

The scale parameter a is inversely proportional to frequency ƒ. A Morlet wavelet is

C tð Þ ¼ p� 1
4 eðio0tÞe

� t2
2

� �

All signals were normalized to 0~1, and 60-Hz line noise was not filtered when transform-

ing 50~500 Hz. The 60-Hz line noise has a very small area in whole WT. Therefore, the length

of the wavelet was determined as 4 seconds considering the time-frequency resolution, the

learning results and the MER segment number. The Morlet function was adopted as the

mother wavelet function.

Training set and test set

In total, 696 MER segments from 34 patients, with an average of 20.47 segments per person,

were included in the analysis. The data set was shuffled to prevent one patient from including

both the training set and test set. For the test set, 2 patients in the good-response group and 2

patients from the moderate-response group were randomly selected. According to the ratio of

the DBS on/off score at 6 months after surgery, the patients were divided into two response

groups: good and moderate. The UPDRS score of the right side is better than that of the left

side, and the classification criteria are different for each side. For the left side, 0–0.69 is a good

response, and 0.7–1.0 is a moderate response. For the right side, 0–0.59 is a good response,

and 0.6–1.0 is a moderate response.

Deep learning

Deep learning is a state-of-the-art approach that can extract both high-level and low-level

abstractions of data. Well-known deep learning algorithms include CNNs, RNNs, and genera-

tive adversarial networks (GANs). Among these algorithms, CNNs are better for image classifi-

cation. CNN extracts features from images using convolutional and pooling layers, and then
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the extracted features are classified with a fully connected layer. One of the CNN structures,

Visual Geometry Group 16 (VGG16) [20], has been widely used since the 2014 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC). VGG16 was used as the classification net-

work. The fully connected layers were modified with 4,096, 4,096, and 1,024 classes to 120,

120, 16, and 2 classes with a dropout rate of 0.2. A learning rate of 0.001 was used for both mul-

titask learning and labeling, and a gradient descent optimizer was used.

Multitask learning

Multitask learning has been successfully used in machine learning and recently in computer

vision [21]. Three types of multitask learning exist: joint learning, learning to learn, and learn-

ing with an auxiliary task. Joint learning was adopted. With multitask learning, a CNN was

trained via two different labels. A model that learns two different tasks simultaneously can

learn a more general representation [22]. One label is a regularizer. Learning with two labels is

more generalizable than training with one label. The convolution layers of VGG16 were used

as a shared layer, and they were used to train a fully connected layer separately with each side

label.

We used the ipsilateral clinical outcome and contralateral clinical outcome as a label for

each of the task-specific layers. Furthermore, we jointly trained a single network with two dif-

ferent labels with different ratios for the loss function because the effect of left-sided DBS on

the contralateral motor function is consider greater than that on ipsilateral motor function.

The algorithm learned with two labels. In the test set, however, the goal is to distinguish the

good-response group and the moderate-response group of only the contralateral side. Fig 1

shows the whole process in a schematic diagram.

Statistical analysis

Statistical analyses were performed with R 3.5.1. Pearson’s correlation coefficients were calcu-

lated and are denoted by r.

IRB

This retrospective study adhered to the Declaration of Helsinki. The patient records were

anonymized and deidentified prior to the analysis. Patients provided their written informed

Fig 1. Process schematic diagram. The input of the convolutional neural network is the wavelet-transformed microelectrode recording signal. The

output is the ratio of the preoperative and 6 months postoperative Unified Parkinson’s Disease Rating Scale (UPDRS) part III score for each side in

multitask learning. (k: kernel size, n: number of feature maps, s: strides).

https://doi.org/10.1371/journal.pone.0244133.g001
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consent to have their health information recorded and used for research purposes. The study

protocol was approved by the Institutional Review Board of Seoul National University Hospi-

tal (IRB No. 1812-086-995).

Results

Patient data

The MER and clinical data of 34 patients were included in the study (Table 1). The mean age

of the patients at diagnosis was 43.21 ± 7.96 years old, and the mean age of the patients at sur-

gery was 57.21 ± 7.96 years old. The duration from symptom onset to surgery was

14.00 ± 5.62. Among the UPDRS part III scores, the subtotals of the items with left or right seg-

ments are denoted by “Left” or “Right”, respectively. The mean preoperative UPDRS part III

score was 12.41 ± 5.19 for the right side of the body and 12.76 ± 5.39 for the left side of the

body. The mean off-DBS UPDRS part III score at 6 months after surgery was 11.22 ± 4.35 for

the right side of the body and 11.54 ± 4.39 for the left side of the body. The mean on-DBS

UPDRS part III score at 6 months after surgery was 6.81 ± 4.19 for the right side of the body

and 7.62 ± 4.13 for the left of the body.

The preoperative UPDRS part III scores of the left and right sides of the body for the 34

patients showed a linear correlation (r = 0.77, p<0.001) (Fig 2). At 6 months after the surgery,

this correlation also existed in both the DBS on (r = 0.79, p<0.001) and off (r = 0.74, p<0.001)

states (Fig 3A and 3B). The preoperative UPDRS part III score did not affect the DBS on/off ratio

at 6 months after the operation (Fig 4A and 4B). However, at 6 months the DBS on/off ratios of

the left and right sides of the body were significantly correlated (r = 0.67, p<0.001) (Fig 5).

Relationship between the MERs & clinical outcome

The MER data were passed through a 50–500 Hz bandpass filter, cut into 4-second lengths,

normalized, and transformed into wavelets (Fig 6A to 6F). The MER data were then classified

according to clinical outcome.

Single-task learning and multitask learning

The MER data were divided according to the frequency band and transformed into wavelets;

Maximum accuracies are obtained when the training softmax cross entropy loss is nearly zero

Table 1. Off-medication scores in 34 patients with bilateral stimulation of the subthalamic nucleus.

Score Score Before STN

DBS

Score at 6 Months After STN DBS, Off-

stimulation

Score at 6 Months After STN DBS, On-

stimulation

UPDRS Part I 3.94 ± 3.27 NA 3.12 ± 2.14

UPDRS Part II 23.76 ± 9.95 NA 14.09 ± 9.04

UPDRS Part III Right 12.41 ± 5.19 11.22 ± 4.35 6.81 ± 4.19

UPDRS Part III Left 12.76 ± 5.39 11.54 ± 4.39 7.62 ± 4.13

UPDRS Part III Total 40.29 ± 15.04 34.85 ± 12.25 22.26 ± 11.81

UPDRS Total 68.00 ± 22.98 NA 39.47 ± 17.85

Global Stage of the Disease (Hoehn and Yahr) 3.16 ± 0.89 2.81 ± 0.77 2.50 ± 0.65

Global Activities of Daily Living (Schwab and

England)

45.59 ± 23.77 NA 64.12 ± 25.75

Levodopa Equivalent Daily Doses 1411.65 ± 547.32 NA 431.47 ± 286.67

The UPDRS Part III scores were improved significantly in the on-stimulation state.

https://doi.org/10.1371/journal.pone.0244133.t001
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and the testing accuracy is highest (after epoch 50). The maximal accuracy was the highest in

the 50–500 Hz group (75.0%) compared with the 1–50 Hz group (33.0%) and the 500–5,000

Hz group (62.5%). However, the model repeated learning for each epoch, and a fluctuation

occurred in validation accuracy at the end of training (Fig 7A). Multitask learning was used to

consider the effect of DBS on both sides of the body, and it found the ratio of maximal accu-

racy to the ratio of the left and right loss functions. The maximal accuracy (80.21%) occurred

when the right-to-left loss ratio was 5:1 and 6:1 (77.08% at 4:1, 71.88% at 3:1, 65.63% at 2:1)

(Table 2). The stability of the model with multitask learning was substantially improved over

the model stability with single-task learning (Fig 7B). The receiver operating characteristic

(ROC) curve was obtained from the prediction of the clinical outcome (Fig 8). The area under

the curve (AUC) was 0.88.

Discussion

Single-task learning

When the wavelet transform of the entire MER is performed, it is divided into three frequency

zones according to the resolutions available as the input of the CNN. These frequency zones

are the same as the frequency bandpass ranges because the wavelet was divided according to

Fig 2. The preoperative UPDRS part III scores (Medication Off). The preoperative UPDRS part III scores

(Medication Off) show linear correlations (r = 0.77, p<0.001) between the right and left sides of the body.

https://doi.org/10.1371/journal.pone.0244133.g002
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frequency. Artifacts were the most common in the 1–50 Hz wavelet. In the 500–5,000 Hz

wavelet, the spike appeared to be the most noticeable, but it was also observed in the 50–500

Hz wavelet. Typical firing patterns, particularly asymmetrical spikes with bursting patterns at

high frequencies, and proprioceptive responses to passive movements of the joint have been

used to determine the boundary of the STN [1]. However, because β-oscillatory activity (13–30

Hz) is limited to the dorsolateral oscillatory region of the STN, the length of the dorsolateral

oscillatory region recorded in the macroelectrode-implanted trajectory predicted a favorable

response to STN DBS [5].

Fig 3. The UPDRS part III scores at 6 months. At 6 months after the surgery, the UPDRS Part III Scores show linear correlation (DBS On, Medication Off, r = 0.79,

p<0.001)(A), (DBS Off, Medication Off, r = 0.74, p<0.001)(B).

https://doi.org/10.1371/journal.pone.0244133.g003

Fig 4. The UPDRS part III DBS on/off ratios at 6 months. Left(A) and Right(B). The UPDRS Part III DBS On/Off Ratios at 6 Months and the Preoperative Part III

Score (Medication Off) were not correlated in each side.

https://doi.org/10.1371/journal.pone.0244133.g004
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One study showed that the high-frequency (500–2,000 Hz) background reflects the location

of the STN [4]. Surprisingly, the results of single-task learning in the 50–500 Hz wavelet were

the best. The 50–500 Hz wavelet appears to be the most consistent feature for the CNN.

Multitask learning

The preoperative UPDRS part III score does not affect the DBS on/off ratio at 6 months after

the operation (Fig 4A and 4B). In other words, no significant correlation was found between

the preoperative condition and postoperative improvement, which is likely because the posi-

tion of the electrode affected the clinical outcome. In this study, the left and right ratios were

correlated with each other at 6 months (Fig 5), probably because a well-inserted electrode also

has a positive effect on ipsilateral motor function. Unilateral STN DBS can improve the bilat-

eral UPDRS motor scores of PD patients. The ratio of ipsilateral side symptom improvement

to the contralateral side is approximately 1.63–2.09:1 according to previous research [23–25].

Although these studies did not show DBS off scores at 6 months, similar results can be deduced

because a large difference between the preoperative score and the DBS off scores at 6 months

was not found. To overcome the instability and inaccuracy of the single-task learning model,

multitask learning using ipsilateral symptom data would be a good option.

Fig 5. The UPDRS part III DBS on/off ratios at 6 months (Medication Off). The UPDRS Part III DBS On/Off

Ratios at 6 months (Medication Off) show a linear correlation between the right and left sides, probably because a well-

inserted electrode also has a positive effect on ipsilateral motor function as well as contralateral motor function.

https://doi.org/10.1371/journal.pone.0244133.g005
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The maximal accuracy of over 70% occurred for the right-to-left loss ratio of 3–6:1. STN

DBS has a bilateral effect, but it has a greater effect on the contralateral side, which is consistent

with other papers that reported clinical outcomes in unilateral DBS [23–25]. Multitask learn-

ing is more stable than single-task learning because the bilateral effect is considered. Moreover,

multitask learning itself can prevent overfitting. Considering this trait, the maximal accuracy

being higher in the model that refers more to the contralateral score is meaningful.

Expected clinical relevance

In our research, the STN is where the typical firing pattern is visually observed in the MER and

where the final lead position is determined. In awake DBS, the results can be checked by

macrostimulation of the selected target, but this verification is not possible in this study

because asleep DBS was applied. Being able to predict the clinical outcome of DBS from a sin-

gle MER would be helpful, particularly when a typical firing pattern is not visible. The method

of manually determining the lead position is different, but it can be used as a common refer-

ence. Recently, published articles have predicted the clinical outcome from the electrode coor-

dinates using deep learning [26]. However, no articles have used deep learning and the time

information from MER data to measure the clinical outcome.

MER under general anesthesia

While propofol anesthesia reduces the firing rate of some basal ganglia [27], no significant dif-

ference was found in firing rate with propofol and fentanyl sedation compared with local anes-

thesia [13]. MER could be performed properly without affecting the surgical outcome only

when remifentanil dosing was stopped and the dose of propofol was carefully monitored [28–

30]. However, the spontaneous firing patterns of STN and substantia nigra reticulate neurons

remain similar to those of LA [30, 31]. No significant differences were found between the GA

Fig 6. Examples of wavelets for the good-(A-C) and moderate (D-F)-response groups. No specific differences were observed between the two groups.

https://doi.org/10.1371/journal.pone.0244133.g006
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Fig 7. Accuracy of Single-task (A) Learning and Multitask (B) Learning by Learning Epoch. As the model repeats epochs, the results become unstable in

single-task learning. The stability of the model with multitask learning was substantially improved over the model stability with single-task learning.

https://doi.org/10.1371/journal.pone.0244133.g007
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and LA groups for the MER trajectories, recorded STN-depths, pre- and postoperative coordi-

nates, and overall incidences of stimulation side effects [32].

Limitations

Left DBS was performed first, and right DBS was performed on the same day. The MER data

from the right side were excluded because they were biased due to left-side DBS insertion.

Table 2. Maximal accuracy according to the right-to-left loss ratio.

Loss Ratio (Right:Left) 1:5 1:4 1:3 1:2 2:3 1:1 3:2 2:1

Max. Accuracy (%) 65.63 59.38 67.71 68.75 64.58 64.58 66.67 65.63

Loss Ratio (Right:Left) 5:2 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1

Max. Accuracy (%) 66.67 71.88 77.08 80.21 80.21 77.08 67.71 67.71 67.71

The maximal accuracy (80.21%) occurred when the right-to-left loss ratio was 5:1 and 6:1.

https://doi.org/10.1371/journal.pone.0244133.t002

Fig 8. Receiver operative characteristic curve. The area under the curve (AUC) was 0.88.

https://doi.org/10.1371/journal.pone.0244133.g008
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Furthermore, only asleep DBS with the same anesthetic was included to reduce the anesthesia

and awake biases, such as patient movements or snoring. Future studies will include all of the

excluded data, and we will explore how to input the left and right MER signals into the learn-

ing algorithm at the same time. Because we used the data from 6 months after the surgery, we

were unable to investigate surgical and medical problems, such as infections and disease pro-

gression. Cerebrospinal fluid (CSF) leakage or head positions can cause brain shifting during

surgery, but we ignored this effect. Brain shifting can change the exact location of a lead at 6

months after surgery [33]. We expect to obtain better results by finding a technique to reflect

each brain shift. As the three inputs were inevitably given the one output value, in future stud-

ies we will obtain better results by labeling each at a 1:1 ratio or by adding information about

the spatial relationships. As the sampling rate of the signal was large and few well-known fea-

tures about MER are available, we could not have a better machine learning control group. A

personalized model was considered, but universal training can predict the MER signal without

using the previous signal. Various optimizers were adopted for the CNN to converge, but the

validation accuracy did not increase in the control group.

Conclusion

Clinical improvements in PD patients who underwent bilateral STN DBS can be predicted

from MER using multitask deep learning. The MER signal itself and the clinical outcome were

matched end-to-end. In particular, multitask learning was used to consider the bilateral effect

of unilateral DBS. The results of the experiment with different ratios of the loss function show

that 5:1 and 6:1 have the best maximal accuracy (80.21%). We had expected to be able to use

machine learning to determine the differences that cannot be found in the conventional way.

However, the result cannot be accepted because of various limitations. After correcting the

limitations one by one and satisfying the results, we will be able to determine the hidden factor

in the MER data. We believe that this finding may be helpful for determining the appropriate

electrode location in new patients.
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