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Abstract 

Study Objectives:  Isolated rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies and even-
tually phenoconverts to overt neurodegenerative diseases including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and 
multiple system atrophy (MSA). Associations of baseline resting-state electroencephalography (EEG) with phenoconversion have been 
reported. In this study, we aimed to develop machine learning models to predict phenoconversion time and subtype using baseline 
EEG features in patients with iRBD.

Methods:  At baseline, resting-state EEG and neurological assessments were performed on patients with iRBD. Calculated EEG fea-
tures included spectral power, weighted phase lag index, and Shannon entropy. Three models were used for survival prediction, and 
four models were used for α-synucleinopathy subtype prediction. The models were externally validated using data from a different 
institution.

Results:  A total of 236 iRBD patients were followed up for up to 8 years (mean 3.5 years), and 31 patients converted to 
α-synucleinopathies (16 PD, 9 DLB, 6 MSA). The best model for survival prediction was the random survival forest model with an inte-
grated Brier score of 0.114 and a concordance index of 0.775. The K-nearest neighbor model was the best model for subtype prediction 
with an area under the receiver operating characteristic curve of 0.901. Slowing of the EEG was an important feature for both models.

Conclusions:  Machine learning models using baseline EEG features can be used to predict phenoconversion time and its subtype 
in patients with iRBD. Further research including large sample data from many countries is needed to make a more robust model.

Key words: REM sleep behavior disorder; Parkinson’s disease; dementia with lewy bodies; multiple system atrophy; phenoconversion; 
EEG; machine learning
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Graphical Abstract 

Statement of Significance

This study’s significance lies in its focus on early α-synucleinopathy detection in patients with Isolated rapid eye movement sleep 
behavior disorder (iRBD), which can evolve into debilitating neurodegenerative diseases like Parkinson’s disease, Dementia with 
Lewy bodies, and Multiple system atrophy. Using baseline EEG data, machine learning models were developed to predict phenocon-
version onset and α-synucleinopathy subtype. The random survival forest model effectively predicted survival outcomes, while the 
K-nearest neighbor model identified subtypes. Notably, EEG slowing played a pivotal role in these models. This research highlights 
the potential for early intervention and improved patient care by identifying high-risk individuals. However, additional research 
with larger, diverse datasets is crucial to strengthen model robustness and applicability.

Introduction
Rapid eye movement sleep behavior disorder (RBD) is charac-
terized by dream enactment and loss of atonia during rapid eye 
movement sleep [1]. Isolated RBD (iRBD) is known as a prodromal 
stage of α-synucleinopathies, specifically Parkinson’s disease (PD), 
dementia with Lewy bodies (DLB), and multiple system atrophy 
(MSA) [2, 3]. The risk of developing α-synucleinopathy among 
patients with iRBD is approximately 18% after 3 years, 31% after 
5 years, and 74% after 12 years [2]. In short, most iRBD patients 
eventually develop an α-synucleinopathy, preceded by a decline 
in either motor or cognitive function [4].

Age, olfactory function, cognitive function, and motor function 
have been reported as clinical biomarkers to predict phenocon-
version with a hazard ratio of up to 3.16 [5, 6]. Neuroimaging of 
dopamine transporters provides a promising biomarker to pre-
dict phenoconversion [7]; however, it is expensive and has lim-
ited accessibility. Electroencephalography (EEG) is a safe and easy 
method to objectively measure brain activity. In patients with 
iRBD, EEG findings have demonstrated a slowing pattern in the 
occipital region, a reduction in delta-band weighted phase lag 
index (wPLI) in frontal region, and an elevation in alpha wPLI 
accompanied by a decrease in delta orthogonalized Correlation 

Coefficient (oCC) [8–11]. Two longitudinal studies have evaluated 
the value of EEG in predicting phenoconversion in iRBD [12, 13]. 
These studies, however, described phenoconversion dichotically, 
i.e. converted or not converted.

However, it is demanded for both patients and clinicians to 
predict when and how fast phenoconversion to α-synucleinopathy 
will occur and to which subtype of synucleinopathy the patient will 
phenoconvert. An individualized model that can predict the time 
from diagnosis until each patient develops a α-synucleinopathy is 
important in understanding their prognosis. Moreover, estimating 
whether the iRBD patients will first develop motor or cognitive 
symptoms is also crucial.

Machine learning is being extensively explored for poten-
tial applications in various diseases and has achieved excellent 
performance compared with conventional methods [14]. Thus, 
machine learning methods can be considered for the application 
of predicting the complex survival time and subtype of iRBD phe-
noconversion. The aim of this study was to propose EEG-based 
machine learning models that can predict the time to phenocon-
version and the subtype of phenoconversion for each patient. 
Various survival analyses and classification models were com-
pared to select the best model.
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Materials and Methods
Participants
Patients with iRBD who visited the sleep clinic of Seoul National 
University Hospital were enrolled and followed up every year. 
RBD was diagnosed according to the International Classification 
of Sleep Disorders—Third Edition (ICSD-3) criteria using overnight 
video-polysomnography (vPSG) [15]. Two neurologists specialized 
in sleep disorders (JK) and movement disorders (KH) examined 
each patient at baseline to evaluate them for dementia, cerebel-
lar ataxia, parkinsonism, or other neurodegenerative diseases.

Participants with a neurodegenerative disease, neurological 
disorder, severe medical illness, or severe obstructive sleep apnea 
(apnea–hypopnea index ≥30) were excluded. This study was 
authorized by the Institutional Review Board (IRB) of the Seoul 
National University Hospital (IRB Number 1406-100-589). Written 
informed consent was obtained from each participant.

For external validation, we used clinical and EEG data of patients 
with iRBD provided by the University Neurology Clinics at Policlinico 
San Martino in Genoa. Clinical and EEG data have been described in 
detail elsewhere [11]. In brief, inclusion/exclusion criteria, clinical 
and EEG assessments substantially overlapped with the Korean 
cohort. All patients completed routine clinical follow-ups during 
which systematic assessments for parkinsonism and demen-
tia were performed, including a semistructured interview with 
patients and caregivers (IRB Number 703, from the Genoa IRB).

Clinical evaluation
The Korean version of the Mini-Mental Status Examination 
(K-MMSE) and the Korean version of the Montreal Cognitive 
Assessment (MoCA-K) were used to evaluate general cogni-
tive function [16, 17]. The Korean version of the RBD Screening 
Questionnaire-Hong Kong (RBDQ-KR) was used to assess the 
RBD symptom severity [18]. The Korean Version of Sniffing Sticks 
(KVSS) was applied to test olfactory symptoms [19]. The Scales 
for Outcomes in Parkinson’s Disease for Autonomic Symptoms 
(SCOPA-AUT) questionnaire was used to examine the symptoms 
of autonomic dysfunction [20]. The Movement Disorder Society—
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III 
was used to assess motor symptoms [21]. Additionally, subjective 
sleep quality and excessive daytime sleepiness were assessed 
using the Pittsburgh Sleep Quality Index (PSQI) and the Epworth 
Sleepiness Scale (ESS), respectively [22, 23].

During follow-up, cognitive function (K-MMSE, MoCA-K), motor 
function (MDS-UPDRS part III), autonomic function (SCOPA-AUT), 
self-reported sleep propensity and quality (PSQI, ESS), RBD symp-
tom severity (RBDQ-KR), and olfactory function (KVSS) were eval-
uated every year. Phenoconversion in patients with iRBD was 
assessed every 6 to 12 months by the same two neurologists (JK and 
KH). Finally, patients with iRBD who developed PD, DLB, or MSA were 
classified as converters (iRBD-C), while the remaining patients were 
classified as non-converters (iRBD-NC). The diagnoses of PD, DLB, 
and MSA were made according to standard criteria [24–26].

EEG recordings and preprocessing
Scalp EEGs were obtained using a 60-channel EEG cap (Wave-Guard 
EEG cap, Advanced NeuroTechnology, Enschede, Netherlands) 
arranged according to the international 10–10 system. The refer-
ence electrode was positioned on an ear and the ground electrode 
was placed on the AFz. Impedances were kept under 10 kΩ. To 
detect and eliminate eye movement artifacts, two EOG electrodes 
were attached to the left and right outer canthi. The sampling 
rate was 400 Hz. The resting-state EEG was recorded for a total of 

5 minutes in all patients while they were awake and alternating 
opening and closing their eyes every 30 seconds. To preprocess 
the data, a 0.5 Hz high-pass filter and a 60 Hz notch filter were 
applied. Only the EEG data recorded while the participant’s eyes 
were closed were extracted and analyzed in this study. EEG seg-
ments with severe artifacts or poor signal quality were removed 
by visually inspecting the data. Then, independent component 
analysis was applied, and the EEGLAB plugin ICLabel was used to 
automatically remove eye artifacts [27, 28]. The threshold for eye 
artifact probability was set to 90%.

EEG data for the external validation set used a system with 61 
electrodes according to the international 10–10 system. The refer-
ence and the ground electrode were Fpz and Oz, respectively, and the 
signals were sampled at 512 Hz. We simultaneously recorded elec-
trooculogram to monitor eye movements. The acquisition protocol 
consisted of approximately 25 resting state recordings subdivided 
into 2–3 minutes with eyes open, 3–4 minutes during hyperven-
tilation, and 17–18 minutes with eyes closed. We conducted the 
extraction of a total of 100 windows from the pre-hyperventilation 
segment, thoroughly focusing on the region that remained unaf-
fected by the ensuing hyperventilation. Impedances were kept 
under 5 kΩ. The same preprocessing procedures used for our data-
set were implemented for the external validation set.

For both centers’ data, a total of 101 seconds of EEG data for 
each patient were eventually included in this study. Preprocessing 
of EEG data were performed using the EEGLAB package (version 
2019.1) for MATLAB (version 9.8.0, The MathWorks, Natick, MA, 
USA) [29].

Experimental procedures
EEG features.
To make the model more robust and reduce overfitting, data aug-
mentation were performed for the training set. To augment the 
total data size the first 100 2-second EEG epochs were extracted by 
the sliding window method with 50% overlap. Thus, one patient’s 
EEG data was augmented to one hundred EEG epochs.

For each EEG epoch, the fast Fourier transforms using the 
Hanning window were applied with a frequency of interest range 
of 1–50 Hz in 0.5 Hz steps. In our study, four frequency bands 
were used: delta (2–3.5 Hz), theta (4–7.5 Hz), alpha (8–12.5 Hz), 
and beta (13–30 Hz). Absolute power was averaged across all elec-
trodes and converted decibels. Relative power was calculated by 
expressing the percentage of power for each frequency band over 
the total power in the 2–30 Hz range. The dominant occipital fre-
quency (DOF) was defined as the average peak frequency with the 
maximum power between 4 and14 Hz in the two occipital chan-
nels (O1, O2). The slow-to-fast power ratio (STF) was calculated 
using the absolute power values averaged for all electrodes as fol-
lows: [(delta + theta)/(beta)]. Recently it has been suggested that 
metrics describing network interactions of large-scale inter-areal 
synchronization between brain oscillations could improve clas-
sification accuracy in iRBD patients [30]. Accordingly, overall 
functional connectivity for each frequency band was extracted 
by averaging the wPLI values of all 1770 electrode pairs [8, 31]. 
Furthermore, Shannon entropy (SE) was defined with 10 bins of 
amplitude values [32]. In total, 15 EEG features were calculated 
for analysis (Supplementary Table S1). All spectral analyses were 
performed using the FieldTrip toolbox version 20200607 [33].

Modeling process (1) - prediction of phenoconversion time.
Eighty percent of the overall dataset was assigned as the train-
ing set, and the remaining 20% of the data were designated as 
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the testing set. All patients with iRBD data, which were divided 
into patients living with iRBD not phenoconverted at follow-up 
(iRBD-NC) and patients with phenoconverted at follow-up 
(iRBD-C), were used in this survival prediction analysis. All dura-
tion information was calculated by the difference between the 
EEG acquisition date and the last visit date of the patient. To iden-
tify the most relevant features for predicting phenoconversion 
time, a two-step feature selection process was used. First, uni-
variable Cox proportional hazard (CPH) regression was performed 
to identify features with a p-value less than 0.1. Next, backward 
multivariable CPH regression was performed to eliminate features 
with a p-value greater than 0.1. To address the imbalanced nature 
of the data, with a larger number of nonconverter samples, the 
synthetic minority oversampling technique (SMOTE) was applied 
to the training set [34]. The CPH, Weibull-accelerated failure time 
(wAFT), and random survival forest (RSF) models were used to 
train and test these data. To evaluate the models, stratified group 
5-fold cross-validation was implemented for internal validation. 
During the training process, stratification was employed specif-
ically for iRBD-NC and iRBD-C subgroups. Harrel’s concordance 
index (C-index) and the integrated Brier score (IBS) were used to 
evaluate the performance of survival prediction analysis [35, 36]. 
The C-index is a commonly used metric in survival analysis that 
measures the ability of the model to correctly rank the survival 
times of patients. The IBS, on the other hand, is a measure of the 
overall accuracy of the model’s predictions, considering both the 
predicted survival times and the observed survival times. For all 
models, hyperparameter optimization was performed using the 
training set while the testing set was used for model performance. 
The final model was fitted with the augmented and resampled 
total dataset by using the best prediction model. As there were no 
patients with MSA in the external validation set, we additionally 
fitted the model excluding the patients with MSA. Permutation 
feature importance was employed to represent the importance 
of each variable in the model. All analyses were conducted using 
Python 3.8.5 (scikit-learn: v.1.1.1; lifelines: v.0.27.0; scikit-survival: 
v.0.18.0; hyperopt: v.0.2.7).

Modeling process (2) - prediction of phenoconversion 
subtype.
Only iRBD-C data were used for subtype prediction analysis to 
classify subtypes of phenoconversion. A training set made up 
of 80% of the dataset and a testing set using the remaining 20% 
were assigned. Following a previous study, we classified pheno-
conversion into two subtypes according to the first presenting 
symptom: motor-first subtype, which includes PD and MSA, and 
cognition-first subtype, which includes DLB [13]. Recursive fea-
ture elimination was applied using multiple models to select the 
most relevant and predictive features for subtype prediction. The 
features selected by recursive feature elimination using XGBoost 
showed the best performance and were therefore used for the 
models. The other models were trained and tested on the selected 
features. Due to data imbalance, the SMOTE was applied in the 
training set. The data were trained and tested using the XGBoost, 
random forest, logistic regression with elastic net regularization, 
and k-nearest neighbor (KNN) models. Hyperparameter opti-
mization was performed using the training set for all models 
while evaluating the testing set. A 10-fold cross-validation was 
performed 10 times for internal validation to obtain a robust 
estimate of the performance of the models. The area under the 
receiver operating characteristic curve (AUC), accuracy, precision, 
recall, and F1 score were utilized to evaluate the performance of 

the subtype prediction analysis. The best prediction model was 
used to fit the final model to the augmented and resampled entire 
dataset. For the same reason described above for survival predic-
tion, a dataset without data from MSA patients was additionally 
analyzed. Classification into PD, MSA, and DLB was also per-
formed. Python 3.8.5 was used to conduct each analysis (scikit-
learn: v.1.1.1; xgboost: v.0.90; hyperopt: v.0.2.7).

Statistical analysis
All data are shown as the mean ± standard deviation [range]. 
The Kolmogorov‒Smirnov test was used to test the normality 
of all variables before analysis. Independent sample t-tests were 
employed to evaluate differences in continuous data. Categorical 
data were analyzed with Fisher’s exact test. Nonnormally distrib-
uted variables were compared using the Mann‒Whitney U test. 
Survival curves were plotted using the Kaplan‒Meier method. 
The log-rank test was used to compare survival distributions 
between our dataset and the external validation dataset. The 
Restricted Mean Survival Time (RMST) is obtained to estimate the 
average survival time up to 5.8 years, which is the last observed 
event time in our dataset [37]. The significance threshold was set 
to 0.05. All statistical evaluations were performed with Python 
3.8.5 using the SciPy library (scipy: v.1.5.2).

Results
Participant characteristics
A total of 236 iRBD patients were included in the internal val-
idation dataset. During a mean follow-up duration of 3.5 years 
(range: 0.9–8.6 years), 31 patients converted to overt neurodegen-
erative diseases, and 205 remained in an isolated state of RBD 
(Figure 1A). The mean time to phenoconversion was 2.66 ± 1.48 
years. Eighty-three patients with no baseline EEG data, 1 patient 
who phenoconverted within 6 months after EEG acquisition, and 
10 patients whose data were recorded with another EEG sys-
tem were excluded from further analysis. Of the remaining 142 
patients, 27 patients were phenoconverted during follow-up (13 
to PD, 8 to DLB, and 6 to MSA). All patients with MSA were of the 
cerebellar type (MSA-C).

There were no significant differences in sex, RBDQ-KR, 
K-MMSE, KVSS, SCOPA-AUT, ESS, and PSQI between the iRBD-NC 
and iRBD-C groups. However, the patients in the iRBD-C group 
were older, had lower education levels, lower MoCA-K scores, 
and higher MDS-UPDRS-III scores (Table 1). When comparing 
motor- and cognition-first subtypes, the cognition-first group 
was older and had lower baseline K-MMSE and MoCA-K scores 
(Supplementary Table S2).

The external validation dataset included 62 patients with 
iRBD who were followed up for 2.17 ± 1.53 years (Supplementary 
Table S3). Seven patients were excluded: five because of poor data 
quality, 1 because the data does not have conversion date infor-
mation and 1 because the data were recorded after phenocon-
version. Seventeen of the iRBD patients in the external validation 
dataset were phenoconverted during follow-up (7 to PD and 10 to 
DLB). Compared to our dataset, patients in the external validation 
dataset were older, were more likely to be male, and had lower 
MMSE scores (Supplementary Table S4). In addition, the log-rank 
test showed that the two datasets showed significantly different 
survival rates (Figure 1B, p < 0.005). The RMST of our dataset was 
5.067 years and the RMST of each patient was calculated from 
the survival curve. In addition, a positive correlation was shown 
between the RMST and time to conversion for the converted 
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patients (Pearson correlation r = 0.525, p = 0.005, Supplementary 
Figure S1).

Phenoconversion time prediction
Delta wPLI was excluded through univariable CPH regression, and 
DOF, relative delta power, relative beta power, and SE were fur-
ther excluded through multivariable CPH regression. Finally, 10 
features were included in this survival prediction analysis. The 
power spectral densities of iRBD-NC and iRBD-C are shown in 
Figure 2B.

We compared the three survival analysis methods using 
our dataset (Supplementary Table S5). For the internal vali-
dation using 5-fold cross-validation, the RSF model was the 
best, with an IBS of 0.114 and a C-index of 0.775. The five most 
important features of RSF were absolute theta power, absolute 
delta power, STF, beta wPLI, and absolute alpha power (Figure 
2A and Supplementary Table S6). The iRBD-C group showed 
higher absolute delta power and absolute theta power but also 

higher alpha power than the iRBD-NC group. For the external 
validation dataset, the RSF model showed an IBS of 0.128 and a 
C-index of 0.561.

Additionally, model results excluding data from patients with 
MSA are listed in Supplementary Table S7.

Phenoconversion subtype prediction
Through recursive feature elimination, eight features were 
excluded due to their low feature importance. As a result, 
seven features were used in this subtype prediction analysis. 
The selected features in subtype prediction were DOF, STF, 
absolute theta power, absolute beta power, relative beta power, 
beta wPLI, and SE (Supplementary Table S8). The power spec-
tral densities of the motor- and cognition-first subtypes are 
shown in Figure 2C.

The scores for internal validation of motor- and cognition-first 
are shown in Table 2. For internal validation, the KNN model’s 
performance was the best among the models, with an AUC of 

Figure 1.  Flowchart and survival curve. (A) Flowchart. (B) Survival curves of Seoul National University Hospital and University of Genoa. 
Abbreviations: iRBD, isolated REM sleep behavior disorder; iRBD-C, iRBD converters; iRBD-NC, iRBD non-converters; PD, Parkinson’s disease; DLB, 
dementia with Lewy bodies; MSA, multiple system atrophy; SNUH, Seoul National University Hospital; UniGe, University of Genoa.

Table 1.  Participant Characteristics of Patients With iRBD Who Further Converted or Not From Seoul National University Hospital

iRBD-NC (n = 115) iRBD-C (n = 27) P value

Age (y) 66.61 ± 6.44 [50–82] 69.85 ± 7.30 [57–82] 0.023

Sex (Male %) M: 75, F: 40 (65.2) M: 15, F: 12 (55.6) 0.380a

Education (y) 12.83 ± 4.08 [0–18] 10.89 ± 4.28 [0–18] 0.029b

RBDQ-KR 49.74 ± 19.88 [4–100] (n = 106) 48.26 ± 16.20 [5–70] (n = 23) 0.740

Conversion duration (y — 2.66 ± 1.48 [0.7–5.8]

K-MMSE 27.77 ± 1.77 [21–30] 27.15 ± 2.21 [20–30] 0.166b

MoCA-K 25.83 ± 2.79 [16–30] 23.15 ± 4.64 [7–29] <0.001

KVSS 17.43 ± 5.32 [7–31] (n = 104) 17.74 ± 6.08 [7–27] (n = 21) 0.815

SCOPA-AUT 12.57 ± 7.12 [1–30] (n = 107) 14.91 ± 9.08 [2–39] (n = 23) 0.176

MDS-UPDRS-III 0.91 ± 1.95 [0–11] (n = 97) 2.35 ± 2.85 [0–8] (n = 17) 0.008b

ESS 5.62 ± 3.50 [0–16] 5.96 ± 4.19 [1–20] 0.658

PSQI 7.02 ± 4.23 [1–18] 6.04 ± 4.12 [1–18] 0.274b

Italics font indicates statistical significance. Abbreviations: iRBD, isolated REM sleep behavior disorder; iRBD-NC, iRBD nonconverters; iRBD-C, iRBD converters; 
RBDQ-KR, Korean version of the RBD screening Questionnaire-Hong Kong; K-MMSE, Korean version of the Mini-Mental Status Examination; MoCA-K, Korean 
version of the Montreal Cognitive Assessment; KVSS, Korean Version of Sniffing Sticks; SCOPA-AUT, Scales for Outcomes in Parkinson’s Disease for Autonomic 
Symptoms; MDS-UPDRS-III, Movement Disorder Society—Unified Parkinson’s Disease Rating Scale Part III; ESS, Epworth Sleepiness Scale; PSQI, Pittsburgh Sleep 
Quality Index.
aFisher’s exact test.
bMann–Whitney U test.
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0.901, accuracy of 0.704, precision of 0.500, recall of 0.875, and F1 
of 0.636 (Figure 3). External validation of the KNN model resulted 
in an AUC of 0.536, accuracy of 0.527, precision of 0.304, recall of 
0.412, and F1 of 0.350 (Supplementary Table S9).

In addition, evaluation results without data from patients 
with MSA and classification into PD, MSA, and DLB are shown in 
Supplementary Tables S10 and S11, respectively. Example plots 
using both phenoconversion time and subtype prediction models 
are shown in Supplementary Figures S2 and S3.

Discussion
In this study, we aimed to predict phenoconversion time and 
subtype in patients with iRBD using resting-state EEG features 
collected at baseline. Our models, which were based on machine 
learning algorithms, showed promising results in predicting phe-
noconversion time and subtype. The RSF model showed accept-
able performance in predicting phenoconversion time, while the 
KNN model was able to predict the conversion subtype (motor-
first or cognition-first) with good AUC. Our models may provide 

a practical solution for predicting individualized phenoconver-
sion time and subtype in patients with iRBD. These predictions 
are important for better management of the disease and to help 
patients to be better prepared for their future.

Two previous studies have attempted to predict phenoconver-
sion from iRBD patients using EEG. In the first, researchers used 
EEG slowing features to predict neurodegeneration in patients 
with iRBD [13]. The focus was to classify iRBD and whether 
patients would phenoconvert without considering phenoconver-
sion time or specific subtypes. Later, the same research group used 
deep learning techniques with EEG spectrograms recorded from 
patients with iRBD to differentiate them from healthy controls 
[38]. In contrast, our study aimed to predict not only the pheno-
conversion time but also the conversion subtype of patients with 
iRBD. We predicted phenoconversion time in patients with iRBD 
using only baseline EEG features. Absolute theta power, absolute 
delta power, beta wPLI, STF, and absolute alpha power were the 
most important features for phenoconversion time prediction. In 
previous studies, it was shown that the absolute EEG power of 
recordings during both sleep and resting state was significantly 
different not only between iRBD patients and controls but also 
between patients with iRBD who converted to neurodegenerative 
diseases and those who had not yet converted [12, 13, 38–41]. In 
particular, the increases in absolute theta power and delta power 
were prominent in converted patients. Higher low-frequency 
power and lower high-frequency power, called EEG slowing, have 
already been shown in iRBD patients by various neurodegenera-
tive studies [13, 39, 42–44]. Therefore, EEG slowing is known to be 
common in patients with iRBD, particularly in those who convert 
to neurodegenerative diseases. Our results demonstrate that EEG 
features can be applied as biomarkers for predicting phenocon-
version time in patients with iRBD.

Figure 2.  (A) Feature importance of random survival forest model and (B) comparison of power spectral densities with standard error between the 
iRBD-NC and iRBD-C groups, and (C) comparison of motor-first and cognition-first presentations. Abbreviations: _A, absolute power; STF, slow-to-fast 
power ratio; wPLI, weighted phase lag index; _R, relative power; SE, Shannon entropy; iRBD, isolated REM sleep behavior disorder; iRBD-C, converters 
to a neurodegenerative disorder from iRBD; iRBD-NC, nonconverters from iRBD.

Table 2.  Subtype Prediction Results

AUC Accuracy Precision Recall F1

XGBoost 0.717 0.741 0.556 0.625 0.588

RF 0.737 0.704 0.500 0.750 0.600

LR 0.770 0.778 0.667 0.500 0.571

KNN 0.901 0.704 0.500 0.875 0.636

Abbreviations: XGBoost, extreme gradient boosting; RF, random forest; LR, 
logistic regression; KNN, K-nearest neighbor; AUC, area under the receiver 
operating characteristic curve.
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Phenoconversion subtype prediction from patients with iRBD 
was also feasible using baseline EEG features. Differences in 
EEG between the motor- and cognition-first subtypes had been 
shown in a previous study. The cognition-first subtype (patients 
with DLB) showed increased delta and theta power, higher STF, 
and lower DOF [45, 46]. Indeed, the selected features for subtype 
prediction in our study were DOF, STF, absolute theta, and beta 
power, which are consistent with previous studies. Additionally, 
EEG slowing is correlated with cognitive impairment [47]. In pre-
vious studies comparing the motor- and cognition-first subtypes, 
the main difference at baseline was cognitive function, which was 
significantly decreased in the cognition-first subtype [2, 48, 49].

In response to the observation regarding subjects with low 
cognitive scores, we analyzed the association between these 
scores and prediction accuracy. For the True Positive (TP) 
cognition-first predictions using the KNN model, the average 
MoCA-K score was 21.4 ± 2.8, encompassing 7 subjects. In con-
trast, the single subject with a False Negative (FN) cognition-first 
prediction had a MoCA-K score of 7. For motor-first predictions, 
the average MoCA-K score was 24.1 ± 3.1 among 12 subjects with 
correct predictions, while it was 25.6 ± 3.6 among 7 subjects 
with incorrect predictions. These findings suggest that lower 
MoCA-K scores tend to be associated with being predicted in 
the cognition-first group as compared to the motor-first group. 
However, it is important to note that our model, primarily based 
on EEG data, does not incorporate clinical variables including 
cognitive scores. Therefore, subjects with lower MoCA scores 
may still be inaccurately predicted in our model. 

Additionally, our model demonstrated enhanced efficacy in 
predicting the cognition-first subtype over the motor-first sub-
type. This finding aligns with previous research indicating that 
certain EEG characteristics, such as slowing and increased theta 
power, are associated with cognitive impairment and the like-
lihood of future cognitive decline [43, 44]. Notably, these EEG 
findings have not been similarly correlated with motor dys-
function. This distinction in EEG markers between cognitive 
and motor impairments provides a plausible explanation for 
our model’s differential predictive performance between these 
two subtypes.Exclusion of patients with MSA slightly improved 
the performance of the phenoconversion time prediction model 
(Supplementary Table S7). The reduced heterogeneity of the 
sample may have made it easier for the model to identify the 
relevant features for phenoconversion time prediction. However, 

it reduced the performance of the KNN model for phenoconver-
sion subtype prediction. The decrease in the number of convert-
ers in the dataset from 27 to 21 following the exclusion of 6 MSA 
patients could have contributed to a significant decrease in the 
model performance.

It is notable that the performance of external validation was 
not as good as expected for both survival prediction and sub-
type prediction. Significantly lower performance for the exter-
nal validation dataset indicates that our model is overfitted 
to our dataset. Although we took measures to prevent overfit-
ting by conducting cross-validation and adjusting parameters 
known to affect overfitting, we could not fully escape overfit-
ting. Compared to the external validation dataset, our dataset 
showed a higher proportion of females, younger age, lower MDS-
UPDRS-III scores, and more MSA-converted patients. Moreover, 
lower number of participants in the external validation dataset 
may have also affected the performance of our model. These 
significant differences between the two cohorts might have 
contributed to the poor performance in the external validation 
of this study.

Studies conducted in cohorts from Asian countries have found 
a slower phenoconversion rate than those from European and 
American cohorts, suggesting ethnic differences in the prognosis 
of iRBD [50, 51]. If this is true, ethnic differences should be taken 
into consideration in the prediction model. Further study is man-
datory to confirm any ethnic and/or regional differences in the 
prognosis of iRBD in the future. Expanding global datasets from 
multiple clinics is critical for constructing ML/DL models that 
generalize across varied acquisition situations, including equip-
ment, protocols, geographies, ethnicity, and age.

There are a few limitations to note. First, age and cogni-
tive function scores, which may affect EEG findings were not 
accounted for [52, 53]. Second, due to the small sample size, we 
were forced to apply data augmentation. The number of patients 
with iRBD in this study was 143, which was relatively small for 
the use of machine learning methods. However, as many studies 
have used EEG sliding window data augmentation, this method of 
data augmentation is likely to be reliable enough to achieve the 
goal of our study [54–56].

In conclusion, we were able to create a useful RSF model 
and KNN model for predicting the time of phenoconversion 
and its subtype, respectively, in patients with iRBD simply using 
resting-state EEG features at baseline. We believe our prediction 

Figure 3.  K-nearest neighbor model prediction results. These results are obtained by internal validation using repeated 10-fold cross-validation. (A) 
Confusion matrix. (B) Receiver operating characteristic curve.Abbreviations: ROC, receiver operating characteristic curve.
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model and method contribute to opening new horizons in the 
management and counseling of patients with iRBD. Furthermore, 
our model can be implemented in clinical EEG machines or can 
be developed as a stand-alone device that can be used in outpa-
tient clinics. A future multicenter study with a larger number of 
patients is needed to elucidate the predictive value of baseline 
EEG features.

Supplementary Material
Supplementary material is available at SLEEP online.
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