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Abstract

IMPORTANCE Joint attention, composed of complex behaviors, is an early-emerging social function
that is deficient in children with autism spectrum disorder (ASD). Currently, no methods are available
for objectively quantifying joint attention.

OBJECTIVE To train deep learning (DL) models to distinguish ASD from typical development (TD)
and to differentiate ASD symptom severities using video data of joint attention behaviors.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, joint attention tasks were
administered to children with and without ASD, and video data were collected from multiple
institutions from August 5, 2021, to July 18, 2022. Of 110 children, 95 (86.4%) completed study
measures. Enrollment criteria were 24 to 72 months of age and ability to sit with no history of visual
or auditory deficits.

EXPOSURES Children were screened using the Childhood Autism Rating Scale. Forty-five children
were diagnosed with ASD. Three types of joint attention were assessed using a specific protocol.

MAIN OUTCOMES AND MEASURES Correctly distinguishing ASD from TD and different levels of
ASD symptom severity using the DL model area under the receiver operating characteristic curve
(AUROC), accuracy, precision, and recall.

RESULTS The analytical population consisted of 45 children with ASD (mean [SD] age, 48.0 [13.4]
months; 24 [53.3%] boys) vs 50 with TD (mean [SD] age, 47.9 [12.5] months; 27 [54.0%] boys). The
DL ASD vs TD models showed good predictive performance for initiation of joint attention (IJA)
(AUROC, 99.6% [95% CI, 99.4%-99.7%]; accuracy, 97.6% [95% CI, 97.1%-98.1%]; precision, 95.5%
[95% CI, 94.4%-96.5%]; and recall, 99.2% [95% CI, 98.7%-99.6%]), low-level response to joint
attention (RJA) (AUROC, 99.8% [95% CI, 99.6%-99.9%]; accuracy, 98.8% [95% CI, 98.4%-99.2%];
precision, 98.9% [95% CI, 98.3%-99.4%]; and recall, 99.1% [95% CI, 98.6%-99.5%]), and high-
level RJA (AUROC, 99.5% [95% CI, 99.2%-99.8%]; accuracy, 98.4% [95% CI, 97.9%-98.9%];
precision, 98.8% [95% CI, 98.2%-99.4%]; and recall, 98.6% [95% CI, 97.9%-99.2%]). The DL-based
ASD symptom severity models showed reasonable predictive performance for IJA (AUROC, 90.3%
[95% CI, 88.8%-91.8%]; accuracy, 84.8% [95% CI, 82.3%-87.2%]; precision, 76.2% [95% CI, 72.9%-
79.6%]; and recall, 84.8% [95% CI, 82.3%-87.2%]), low-level RJA (AUROC, 84.4% [95% CI, 82.0%-
86.7%]; accuracy, 78.4% [95% CI, 75.0%-81.7%]; precision, 74.7% [95% CI, 70.4%-78.8%]; and
recall, 78.4% [95% CI, 75.0%-81.7%]), and high-level RJA (AUROC, 84.2% [95% CI, 81.8%-86.6%];
accuracy, 81.0% [95% CI, 77.3%-84.4%]; precision, 68.6% [95% CI, 63.8%-73.6%]; and recall, 81.0%
[95% CI, 77.3%-84.4%]).

CONCLUSIONS AND RELEVANCE In this diagnostic study, DL models for identifying ASD and
differentiating levels of ASD symptom severity were developed and the premises for DL-based
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Abstract (continued)

predictions were visualized. The findings suggest that this method may allow digital measurement of
joint attention; however, follow-up studies are necessary for further validation.

JAMA Network Open. 2023;6(5):e2315174. doi:10.1001/jamanetworkopen.2023.15174

Introduction

Attending to other people and sharing an attentional focus on objects or events with other
individuals facilitates learning to socialize.1 This is termed joint attention, and despite interindividual
differences in joint attention, this ability is observed as early as 6 months in a typically developing
infant.2,3 Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
abnormal patterns of social interaction and communication.4 Infants with this condition, but not
those with typical development (TD), appear to lack joint attention.5 Thus, this difference has
interested researchers as a means of diagnosis, a prognostic indicator, and a potential intervention
target for individuals with ASD.6 Although validated manuals for observing joint attention exist, for
example, the Early Social Communication Scales (ESCS),7 they are labor-intensive and difficult to
implement without trained clinicians and the proper experimental setup.

Recently, machine learning and deep learning (DL) artificial intelligence (AI) models using simple
behavioral video data to detect ASD have gained momentum, not only to characterize children with
autism objectively but also to develop scalable screening or assistive diagnostic tools for ASD.8-11

Previous efforts to build ASD-detection AI models showed promising results. However, due to a lack
of automation, the requirements for specialized and expensive equipment, calibration, trained
personnel, dependence on human rating of autistic behaviors, and low precision and recall, they are
unsuitable for the development of ASD detection tools.9-11 The low precision and recall scores of
these models9-11 may be due to a lack of targeted behavioral biomarkers that can readily discriminate
ASD from TD. Another valid cause may be the absence of methods for quantitatively measuring the
complex hallmark behaviors of ASD. Thus, there is a need for objective measurement of clinically
validated autism-related behaviors, such as joint attention, which may be implemented in a screening
tool as well as in an objective diagnostic tool for clinicians who have had to rely on subjective
assessment scores in diagnosing ASD to date.

We developed a digitalized method for joint attention assessment that required a new protocol
for specific task administration guidelines to elicit 3 types of joint attention mentioned in the ESCS7

for video recording of task-related behaviors. The collected video data were then used as input for
training a DL model to identify ASD and assess ASD symptom severity. Preliminary results have been
obtained previously with this approach in a small sample.12 In the present study, we assessed
whether the joint attention–based DL model could distinguish children with ASD from those with TD
and differentiate ASD symptom severity levels based on joint attention behaviors ascertained from
input video data using explainable AI techniques.

Methods

Study Design and Setting
This prospective diagnostic study involved children aged 24 to 72 months from multiple sites in
South Korea. Children with ASD were recruited from a single institution—Seoul National University
Hospital (SNUH) Child Psychiatry Outpatient Clinic—where individuals at high risk of ASD were
referred from throughout the country, while individuals with TD and no history of developmental
delay or psychiatric condition per parent report were recruited from various day care centers across
South Korea. Participants were from Seoul (25%), metropolitan cities (25%), or self-governing
provinces (50%). All caregiver-reported ethnicity, in accordance with the National Institutes of
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Health categories, was Korean. Caregivers provided written informed consent. The study was
approved by Yonsei University Health System Institutional Review Board and followed the Standards
for Reporting of Diagnostic Accuracy Studies (STARD) reporting guideline.

Participants
Conservative inclusion criteria for ASD (clinical diagnosis by a child psychiatrist and scores above the
cutoff on the criterion standard diagnostic tool) and TD (scores below the cutoff on a screening tool)
were used to select individuals belonging to clinically distinct groups to ensure development of an
accurate and precise ASD vs TD classification model. Detailed enrollment process is described in
eFigure 1 in Supplement 1, and sociodemographic and clinical measures are presented in the Table.

Measures
Screening Assessments
All caregivers completed the Korean Childhood Autism Rating Scale II (K-CARS-2)13,14 as part of
screening. The K-CARS-2 consists of 15 questions about the presence or absence of autism
symptoms, with a total score of 15 to 60. The K-CARS-2 has been also used to assess ASD symptom
severity, where scores less than 30 represent non-ASD; 30 to 36, mild or moderate ASD; and 37 to
60, severe ASD.14

Diagnostic Assessments
Children whose K-CARS-2 scores revealed an ASD risk or whose caregiver expressed concern were
referred to a child psychiatrist for a diagnostic evaluation at SNUH. The Korean Autism Diagnostic
Observation Schedule II (K-ADOS-2)15-17 was administered to children who received a clinical
diagnosis of ASD as part of routine evaluation.

Cognitive Functioning Assessment
Cognitive functioning was assessed using various measurements, depending on the child’s age and
ability to attend to demanding cognitive tasks. We defined the best estimate IQ using the Korean
Bayley Scales of Infant and Toddler Development, Second Edition,18 and Korean Wechsler Preschool
and Primary Scale of Intelligence, Fourth Edition.19

Joint Attention Tasks and Video Data Acquisition
We designed a protocol for measuring and video recording 3 types of joint attention, adopting
methods from the ESCS manual of Mundy et al7 and validated behavior extraction techniques.20

Children were individually tested in a quiet room. Each child was seated on a height-adjustable chair
in front of a table.

There are 2 types of joint attention: initiation of joint attention (IJA) associated with the child’s
motivation for social interaction, and response to joint attention (RJA), associated with the child’s
responsiveness to a social cue.21 Response to joint attention may be classified as low and high level,
referring to the child’s ability to maintain attention on objects pointed near them (low-level RJA) and
far from them (high-level RJA).22 Video data were collected from 3 joint attention tasks designed to
elicit IJA, low-level RJA, and high-level RJA behaviors. The procedures and video acquisition setup
are described in eFigures 2 and 3 in Supplement 1. Video data were acquired in a single 10-minute
session per participant. Tasks were filmed from a front-facing viewpoint using a digital camera (DSC-
RX100 IV; Sony) with resolution of 1920 × 1080 and 30 frames/second. As a way of monitoring how
engaged a participant was for each repeated trial of a given task, we devised a compliance score
metric to compute compliance scores that could indirectly show the participants’ task performance
and engagement level (eTable 1 in Supplement 1).
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Development of a DL System for ASD Detection and Symptom Severity Assessment
We customized a DL classification system consisting of neural network architectures, that is, a
convolutional neural network (CNN),23 long short-term memory,24 and attention mechanism25 as
illustrated in eFigure 4 in Supplement 1. Size of the input data for the IJA-based DL system is
224 × 224 × 300 (30 frames/s × 10 seconds) and 224 × 224 × 150 (30 frames/s × 5 seconds) for the
RJA-based DL system. We used 10-fold group-wise (by individual) cross-validation for development

Table. Participant Characteristicsa

Characteristic

Participant group

P valueASD (n = 45) TD (n = 50)
Recruitment University hospital Day care centers >.99

Sex, No. (%)

Boys 24 (53.3) 27 (54.0)
>.99

Girls 21 (46.7) 23 (46.0)

Age, mo

Mean (SD) 48.0 (13.4) 47.9 (12.5)
.99

Median (range) 52.0 (24.0-68.0) 48.5 (25.0-72.0)

Toddler or preschool age, No. (%)

<48 mo 21 (46.7) 21 (42.0)
.80

≥48 mo 24 (53.3) 29 (58.0)

Best estimate IQ by ageb

<48 mo

Mean (SD) 60.1 (15.4) 104 (19.1)
<.001

Median (range) 60.0 (40.0-95.0) 111 (55.0-125.0)

≥48 mo

Mean (SD) 55.1 (20.8) 105 (14.5)
<.001

Median (range) 42.0 (40.0-119.0) 105 (56.0-140.0)

Verbal IQ by ageb

<48 mo

Mean (SD) 61.5 (15.4) 103 (20.0)
<.001

Median (range) 55.0 (46.0-101.0) 106 (46.0-129.0)

≥48 mo

Mean (SD) 58.8 (20.8) 103 (18.3)
<.001

Median (range) 45.0 (45.0-127.0) 105 (62.0-142.0)

K-CARS-2 by agec

<48 mo

Mean (SD) 31.3 (5.4) 16.0 (2.9)
<.001

Median (range) 31.5 (18.5-40.0) 15.0 (15.0-25.5)

≥48 mo

Mean (SD) 31.2 (6.1) 15.1 (0.3)
<.001

Median (range) 31.3 (32.0-43.0) 15.0 (15.0-16.0)

K-ADOS-2 CSSc

Mean (SD) 6.07 (1.6) NA
NA

Median (range) 6.00 (3.0-10.0) NA

SA CSS

Mean (SD) 6.62 (1.8) NA
NA

Median (range) 6.00 (3.0-10.0) NA

RRB CSS

Mean (SD) 6.16 (2.2) NA
NA

Median (range) 7.00 (1.0-9.0) NA

K-ADOS-2 module, No. (%)d

T 8 (17.8) NA

NA1 28 (62.2) NA

2 9 (20.0) NA

Abbreviations: ASD, autism spectrum disorder; CSS,
calibrated severity score; K-ADOS-2, Korean Autism
Diagnostic Observation Schedule II; K-CARS-2, Korean
Childhood Autism Rating Scale II; NA, not applicable;
RRB, restricted and repetitive behaviors; SA, social
affect; T, toddler; TD, typical development.
a The threshold for statistical significance was set at

P < .05. χ2 Test was used to compare categorical
variables (reported as No. [%] of participants);
continuous variables are reported as mean (SD) or
median (range).

b Measured using Korean Wechsler Preschool and
Primary Scale of Intelligence, Fourth Edition scores
and Korean Bayley Scales of Infant and Toddler
Development, Second Edition scores.

c Measured using the K-ADOS-2 total severity
calibrated scores.

d Modules are designated T for toddler, 1 for
individuals with preverbal or single-word language,
and 2 for individuals with phrase speech.
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of ASD detection and ASD symptom severity assessment systems. Performances during training and
validation are presented in eTable 2 in Supplement 1.

Interpretability of the DL System: Use of Class Activation Map, Attention Plot, and Cluster Map
The gradient-weighted class activation mapping (Grad-CAM) technique26 was used to produce visual
explanations of how the system makes its prediction by superimposing a visualization layer at the
end of the CNN model. This method uses the gradients of any target concept, which are accumulated
in the last CNN layer, to generate a localization heatmap highlighting key areas in the image for
predicting the concept.26 Redder areas suggest more significant features for model prediction. Long
short-term memory was developed to better process sequential data24; hence, it was incorporated
into our DL classification system to account for the time-dependent nature of video data. The
addition of the attention mechanism25 enabled us to access and visualize the attention weights
across each video sequence according to which frames or video time points contributed most to the
model’s decision-making by plotting the attention weights across each video sequence. To visualize
how the DL system distinguishes ASD from TD or distinguishes the different severities of ASD on a
data set level and thus verify the consistency of our DL system’s decision-making, we drew cluster
maps on the testing data set for each joint attention task. The technique used was agglomerative
hierarchical clustering, which is characterized by clustering through iteration, where similar clusters
merge with other clusters until k clusters are formed.27 This can be visualized via a dendrogram.27

Statistical Analysis
We used means (SDs) and medians (ranges) to express continuous variables. The χ2 test was used to
compare categorical variables. A 2-way mixed analysis of variance was used to explore 2-way
interactions between the ASD vs TD effect and the number of repeated trials on the compliance
score. The area under the receiver operating characteristic (AUROC), accuracy, recall, and precision
were computed to evaluate the performance of the classification models. Statistical analyses and
calculations of the validation measures were performed using Python, version 3.6.8, with SciPy,
version 1.4.1,28 and Statsmodels 0.11.1 (Python Software).29 Cluster maps were drawn using Scikit-
learn, version 0.23.2,30 Seaborn, version 0.11.0,31 and Matplotlib, version 3.3.1 (Python Software).32

Deep learning provided a classification score ranging from 0 to 1, and the lowest predicted
probability value of the DL model’s output is greater than 0.5 for classifying ASD vs TD and the
different ASD symptom severities.11,33 The threshold for statistical significance was set at 2-sided
P < .05. We estimated CIs with the Hanley and McNeil method34 at 95% level.

Results

Participant Characteristics
Of the 110 children with screening data, a total of 95 (86.4%) were included for joint attention–based
AI model training, 45 (47.4%) with ASD (mean [SD] age, 48.0 [13.4] months; 24 boys [53.3%] and 21
girls [46.7%]) and 50 (52.6%) with TD (mean [SD] age, 47.9 [12.5] months; 27 boys [54.0%] and 23
girls [46.0%]). Detailed descriptions of the 2 groups are shown in the Table.

Task Compliance Through Repeated Trials by Diagnostic Group
Using our compliance scoring metric, we discovered that while the overall quality of joint attention
behaviors differed between TD and ASD groups independently of trial or task type, each group
showed similar within-group compliance (attentiveness) patterns for each joint attention task. While
most children with ASD showed an incremental reduction in attentiveness after showing initial
interest in the social cue as much as the children with TD for the IJA task, children with ASD showed
a contrasting uninterest in the social cue presented at the beginning of RJA tasks. Detailed results of
2-way mixed analysis of variance and a visual representation of the task compliance results are shown
in eFigure 5 in Supplement 1.
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Joint Attention–Based DL System for Prediction of ASD and ASD Symptom Severity
While all DL models trained on any joint attention task showed promising classification performance
in identifying ASD, the IJA-based ASD symptom severity prediction DL model showed superior
performance compared with that of the models based on RJA tasks across all validation measures.
The validation measures of the DL models are presented in Figure 1.

DL-Based ASD Prediction
The IJA-based model showed an AUROC of 99.6% (95% CI, 99.4%-99.7%), accuracy of 97.6% (95%
CI, 97.1%-98.1%), precision of 95.5% (95% CI, 94.4%-96.5%), and recall of 99.2% (95% CI, 98.7%-
99.6%). The low-level RJA–based model showed an AUROC of 99.8% (95% CI, 99.6%-99.9%),
accuracy of 98.8% (95% CI, 98.4%-99.2%), precision of 98.9% (95% CI, 98.3%-99.4%), and recall
of 99.1% (95% CI, 98.6%-99.5%). The high-level RJA–based model showed an AUROC of 99.5%
(95% CI, 99.2%-99.8%), accuracy of 98.4% (95% CI, 97.9%-98.9%), precision of 98.8% (95% CI,
98.2%-99.4%), and recall of 98.6% (95% CI, 97.9%-99.2%).

DL-Based ASD Symptom Severity Prediction
The IJA-based model showed an AUROC of 90.3% (95% CI, 88.8%-91.8%), accuracy of 84.8% (95%
CI, 82.3%-87.2%), precision of 76.2% (95% CI, 72.9%-79.6%), and recall of 84.8% (95% CI, 82.3%-
87.2%). The low-level RJA–based model showed an AUROC of 84.4% (95% CI, 82.0%-86.7%),
accuracy of 78.4% (95% CI, 75.0%-81.7%), precision of 74.7% (95% CI, 70.4%-78.8%), and recall of
78.4% (95% CI, 75.0%-81.7%). The high-level RJA–based model showed an AUROC of 84.2% (95%
CI, 81.8%-86.6%), accuracy of 81.0% (95% CI, 77.3%-84.4%), precision of 68.6% (95% CI,
63.8%-73.6%), and recall of 81.0% (95% CI, 77.3%-84.4%). To explore whether age affects model
performance, we performed additional analysis by age (<48 vs �48 months). Even after controlling
for the effect of age, the IJA-based model performance was superior to that of the other task-
based models. There was an improvement in high-level RJA–based model performance when trained
on data sets of older children. The results of model performance by age group are presented in
eFigure 6 in Supplement 1.

Interpreting the DL System’s Classification Premises: Grad-CAM and Attention Plot
The Grad-CAM results for TD and ASD are shown in eFigure 7 in Supplement 1. Attention plots are
shown in eFigure 8 in Supplement 1. Peaks at certain time steps, representing an increase in attention

Figure 1. Performance of the Joint Attention–Based Deep Learning System

100

80

60

40

20

0

Es
tim

at
e,

 %

AUROC Accuracy Precision Recall

ASD vs TDA

100

80

60

40

20

0

Es
tim

at
e,

 %

AUROC Accuracy Precision Recall

Non-ASD vs mild or moderate ASD vs severe ASDB

RJA low RJA highIJA

Bar graphs of models for autism spectrum disorder (ASD) detection (A) and ASD
symptom severity assessment (B). The models’ prediction of the area under the receiver
operating characteristic curve (AUROC), accuracy, precision, and recall using initiation
of joint attention and low- and high-level response to joint attention are shown for

testing data sets. The mean and 95% CIs (error bars) were calculated from all ASD
detection (A) and symptom severity assessment (B) models based on 10-fold cross-
validation. IJA indicates initiation of joint attention; TD, typical development; RJA,
response to joint attention.

JAMA Network Open | Psychiatry Deep Learning for Detection and Symptom Severity Assessment of ASD

JAMA Network Open. 2023;6(5):e2315174. doi:10.1001/jamanetworkopen.2023.15174 (Reprinted) May 25, 2023 6/13

Confidential: Embargoed Until 11:00 am ET, May 25, 2023. Do Not Distribute

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.15174&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.15174
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.15174&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.15174
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.15174&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.15174
http://media.jamanetwork.com/faqs


weights, as shown in the attention plots (y-axis attention weights vs x-axis time steps), were
presumed to be video frames capturing important features for decision-making by the DL model. For
the time steps at which attention weights peaked, we visualized the gradient weights using Grad-
CAM, which revealed differing patterns of motion and behavior between the TD and ASD groups. In
the IJA task, which was designed to trigger the participant to initiate social interaction, individuals
with TD showed a triadic gaze pattern—gaze shifting from the toy object to the examiner, then back
to the toy object—while the individual with ASD failed to gaze on either the toy object or the
examiner (eFigure 7A in Supplement 1). In the low-level RJA task, a heatmap around the face and eyes
showed that the gaze of the individual with TD on the presented toy object was maintained for long
durations, while the gaze of the individual with ASD remained on the toy object only briefly, and then
wandered off elsewhere (eFigure 7B in Supplement 1). In the high-level RJA task, individuals with TD
immediately turned around to view the poster and then turned back to face the examiner as if
seeking approval, while those with ASD showed delayed or no response (eFigure 7C in
Supplement 1).

Interpreting the DL System’s Classification Premises: Hierarchical Clustering
A cluster map hierarchically clusters to order data—in this case, attention weights through the video
sequence—by similarity, thereby reorganizing the data for the rows and columns and displaying
similar attention weight rise and fall patterns next to one another. Different task types showed
different patterns of attention weight peaks between different classes at the data set level.
Individuals of the same cluster showed similar peak rise and fall patterns across the time steps, as
shown in Figure 2 and Figure 3 and eFigures 9 and 10 in Supplement 1. While all 3 joint attention–
based cluster maps sorted ASD vs TD with nearly equal effectiveness (Figure 2 and eFigure 9 in
Supplement 1), the IJA-based cluster map (Figure 3) sorted non-ASD vs mild to moderate ASD vs
severe ASD more effectively than the RJA-based cluster maps (eFigure 10 in Supplement 1).

Discussion

To the best of our knowledge, no previous study has demonstrated that DL models for the detection
and symptom severity assessment of ASD could be developed using a complex behavioral biomarker
such as joint attention. Previous attempts to distinguish ASD from TD using simple gestures9 or
eye-gaze patterns35 were limited by high false-positive rates due to the lack of targeted ASD-related
behavioral biomarkers with high discriminatory power or the lack of a replicable method for
objectively measuring target behaviors.

In this diagnostic study, our methodical acquisition of input video data for the DL system yielded
predictions with high accuracy and precision. By adopting operational definitions of joint attention
from well-validated methods,7,20 we designed joint attention tasks for easy administration and
replicability, eliciting distinctive patterns of social interaction that differed according to diagnosis
status and ASD symptom severity. In addition, when acquiring joint attention videos, we monitored
the task compliance of every participant at each repeated measure of joint attention. Children with
ASD showed qualitatively different behaviors in response to socially salient information. Both ASD
and TD showed habituation after 10 repetitions of the IJA task and after 5 repetitions of the RJA
tasks. Based on these results, we assume that a joint attention–driven DL model should be trained on
videos of the first 5 to 10 repetitions of the same joint attention behavior.

By implementing explainable AI tools, we were able to show that our DL systems made
predictions based on salient behavioral differences, such as turning one’s head or shifting one’s eye
gaze to view a shared interest better, in the same way trained specialists diagnose ASD, and for
assessing the different symptom severities of ASD. Children with TD showed triadic gaze patterns1,2,7

during the IJA task, maintained gaze on a visual stimulus during the low-level RJA task, and
immediately turned their heads to view a visual stimulus located far away during the high-level RJA
task. Children with ASD seldom or never showed triadic gaze patterns during the IJA task, were not
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Figure 2. Hierarchically Clustered Heatmaps of Autism Spectrum Disorder (ASD) Detection System
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The model uses a cluster map of initiation of joint attention (IJA)–based ASD vs typical
development (TD). The horizontal axis denotes video frames across time (10 seconds ×
30 frames/s = 300 frames). The left vertical axis is the dendrogram, which shows the
sequences of merges or splits that occurred during the agglomerative hierarchical
clustering. The right vertical axis denotes the different participants included in the
testing data set. The cluster map of the IJA-based model shows different patterns of

attention weight rise and fall at an individual (patient ID) and diagnostic group (ASD vs
TD) level. Darker shades in the heatmap represent an increase in attention weight at a
certain time step (video frame), correlated with changes in motion or eye-gaze shifting,
as confirmed by the gradient-weighted class activation mapping results. Cluster analysis
results, as visualized by the dendrograms, reveal that the IJA task forms clusters, each
consisting of either TD or ASD based on heatmap patterns.
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Figure 3. Hierarchically Clustered Heatmaps of Autism Spectrum Disorder (ASD) Symptom Severity Assessment System
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The model uses a cluster map of initiation of joint attention (IJA)–based non-ASD vs mild
or moderate ASD vs severe ASD. The horizontal axis denotes video frames across time
(10 seconds × 30 frames/s = 300 frames). The left vertical axis is the dendrogram, which
shows the sequences of merges or splits that occurred during the agglomerative
hierarchical clustering. The right vertical axis denotes the different participants included
in the testing data set. The cluster map of the IJA-based model shows different patterns
of attention weight rise and fall at an individual (patient ID) and diagnostic group

(non-ASD vs mild or moderate ASD vs severe ASD) level. Darker shades in the heatmap
represent an increase in attention weight at a certain time step (video frame), correlated
with changes in motion or eye-gaze shifting, as confirmed by the gradient-weighted class
activation mapping results. The cluster analysis results, as visualized by the
dendrograms, reveal that the IJA task forms clusters, each consisting of either non-ASD,
mild or moderate ASD, or severe ASD based on heatmap patterns.
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able to maintain gaze on visual stimuli during the low-level RJA task, and showed delayed or no
response to the examiner’s directing attention to visual stimuli across the room during the high-level
RJA task.

Although DL systems trained on any given joint attention task showed high and comparable
detection performances in distinguishing ASD vs TD, the IJA-based DL model performed significantly
better than the RJA-based models in ASD symptom severity assessment. The RJA tasks, while
effective for checking the likelihood of having ASD, may not be sensitive enough to detect subtle
motivational nuances pertinent for differentiating one type of ASD from another. Performance of RJA
tasks may be associated with development, as model training using the data set of older children
showed improved performance. Based on our compliance subanalysis results, it is also plausible that
due to early loss of interest during RJA data collection, the DL models could not extract enough
feature patterns across individuals with different levels of ASD.

Limitations
This study has some limitations, including the small sample size and a statistically significant
difference in IQ between children with ASD and TD. IQ affects one’s ability to perform behavioral
tasks; however, joint attention is a strong trait differentiating ASD from TD even after controlling for
IQ.36 External validation using a larger sample of IQ-matched cohorts with ASD and TD is still
warranted.

Conclusions

In this diagnostic study, we developed DL models for identifying ASD and differentiating levels of ASD
symptom severity. We believe our research opens possibilities for gathering large data sets on
behavioral biomarkers through standardized video data acquisition setup amenable to computer
vision and DL and applicable to a wide range of neuropsychiatric conditions.37,38 Moreover, our
findings suggest that our method may be a good alternative for assisting clinicians in making well-
informed referrals to a child development specialist or in making ASD diagnosis.
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