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A B S T R A C T

Objectives: Skeletal muscle gauge (SMG) was recently introduced as an imaging indicator of sarcopenia. Com-
puted tomography is essential for measuring SMG; thus, the use of SMG is limited to patients who undergo
computed tomography. We aimed to develop a machine learning algorithm using clinical and inflammatory
markers to predict SMG in patients with colorectal cancer.
Methods: The least absolute shrinkage and selection operator regression model was applied for variable
selection and predictive signature building in the training set. The predictive accuracy of the least absolute
shrinkage and selection operator model, defined as linear predictor (LP)-SMG, was compared using the area
under the receiver operating characteristic curve and decision curve analysis in the test set.
Results: A total of 1094 patients with colorectal cancer were enrolled and randomly categorized into training
(n = 656) and test (n = 438) sets. Low SMG was identified in 142 (21.6%) and 90 (20.5%) patients in the train-
ing and test sets, respectively. According to multivariable analysis of the test sets, LP-SMG was identified as
an independent predictor of low SMG (odds ratio = 1329.431; 95% CI, 271.684�7667.996; P < .001). Its pre-
dictive performance was similar in the training and test sets (area under the receiver operating characteristic
curve = 0.846 versus 0.869; P = .427). In the test set, LP-SMG had better outcomes in predicting SMG than sin-
gle clinical variables, such as sex, height, weight, and hemoglobin.
Conclusions: LP-SMG had superior performance than single variables in predicting low SMG. This machine
learning model can be used as a screening tool to detect sarcopenic status without using computed tomogra-
phy during the treatment period.

© 2023 Elsevier Inc. All rights reserved.
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Introduction

Muscle impairment, a condition characterized by progressive
loss of muscle mass and quality, is an outstanding predictive factor
for clinical outcomes in various types of cancers [1,2]. For instance,
it has been reported that sarcopenia is associated with reduced
response rate to chemotherapy and worse progression-free survival
in lung cancer [3]. In addition, sarcopenia, along with diminished
muscle strength, predicted overall survival (OS) in head and neck
cancer patients compared with other variables [4]. Furthermore, sar-
copenia was associated with higher surgical and medical complica-
tion rates as well as reduced functional well-being in colorectal
cancer (CRC) patients [5,6]. Skeletal muscle index (SMI) and skeletal
muscle radiodensity (SMD) are two values commonly used for
assessing sarcopenia risk; they signify quantitative and qualitative
measures of muscle composition, respectively. Recently, skeletal
muscle gauge (SMG), which is defined as the product of SMI and
SMD, has emerged as a noteworthy predictor of postoperative out-
come in patients with cancer [7�10]. Average SMGwas significantly
lower in patients with grade 3 or 4 toxicity to chemotherapy than in
those without grade 3 or 4 toxicity in either metastatic or early-
stage breast cancer [8,9]. Our group recently reported that low SMG
was an independent poor prognostic factor for OS (training set, haz-
ard ratio = 2.18; 95% CI, 1.43�3.32; P < .001 and test set, hazard
ratio = 1.79; 95% CI, 1.07�3.00; P = .025) in patients with CRC [11].
Based on these findings, we speculated that SMG might have
enhanced prognostic value in comparison with SMI or SMD alone in
patients with cancer.

Muscle mass and/or quality can be measured using several
modalities, such as dual-energy x-ray absorptiometry, bioelectrical
impedance analysis, computed tomography (CT), and magnetic
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resonance imaging [12,13]. Nowadays, CT is the most commonly
used imaging modality to simultaneously assess muscle mass and
quality, especially in cancer patients. However, CT use is limited
because of its labor-intensive, cost-inefficient nature as well as sig-
nificant radiation exposure [14]. Previous research has verified
that serial changes in muscle mass are more meaningful in predict-
ing clinical outcomes than single-stage measurements [15�17].
Considering such findings, a method that can easily predict muscle
changes at various stages of treatment without resorting to CT use
would be invaluable.

Several previous studies have predicted muscle impairment
using only clinical values. For instance, a prognostic nomogram
consisting of age, sex, body mass index (BMI), hemoglobin, and
gait speed has been developed to predict low muscle mass (SMI)
and radiodensity (SMD) in patients with gastric cancer [18]. An
association between systemic inflammation and increased risk of
sarcopenia has been previously reported; cytokines, such as tumor
necrosis factor a, interleukin-6, and interleukin-1, have been
implicated as promoting inflammatory cell infiltration into
muscles [19]. Also, the NLRP3 inflammasome and relevant cellular
pathways, including pyroptosis, have been noted to accelerate
muscle dysfunction [20] As such, inflammatory markers have also
been frequently used in sarcopenia risk predictive models. Since
an association between systemic inflammation and increased risk
of sarcopenia has been reported, inflammatory markers have also
been used in sarcopenia risk predictive models. Borges et al.
[21] reported that a high neutrophil-to-lymphocyte ratio (NLR)
could predict sarcopenia with a sensitivity of 49% and specific-
ity of 81.1%, suggesting an NLR of 6.5 as an optimal cutoff
value. Other systemic inflammation-related variables, such as
platelet-to-lymphocyte ratio (PLR) and lymphocyte-to-mono-
cyte ratio (LMR), have emerged as potential predictors of sarco-
penia. For instance, Yoon et al. [22] generated a machine
learning model that included changes in the NLR (%/50 d) and
PLR (%/50 d) to predict muscle loss during chemoradiotherapy
in patients with esophageal cancer. However, only a few stud-
ies that use machine learning models dependent on systemic
inflammatory markers to predict sarcopenia in patients with
CRC have been conducted.

Thus, the aim of this study was to develop a machine learning
model that uses routinely examined clinical variables and systemic
inflammatory markers to predict SMG and ultimately anticipate
the risk of muscle impairment in patients with CRC.

Methods

Patient selection

Patients with CRC treated between January 2005 and April 2014
were initially considered for this study. Patients without the fol-
lowing information were excluded from the analysis: cell type,
tumor location, tumor stage, preoperative treatment, SMD, SMI,
NLR, and albumin-bilirubin (ALBI) score. In addition, patients with
hereditary colon cancer, ulcerative colitis or Crohn’s disease-
�associated cancer, double primary cancer, or inflammatory bowel
disease were excluded along with those who underwent emer-
gency surgery, those whose CT images were not taken �31 d
before surgery, and those whose NLR values were not measured
�31 d from surgery (Supplementary Fig. 1).

This study has been approved by the appropriate ethics com-
mittee and has therefore been performed in accordance with the
ethical standards of the 1964 Declaration of Helsinki and its later
amendments. Informed consent was waived because of the retro-
spective nature of the study.
Measurements of SMI, SMD using CT images, and calculation of SMG

Skeletal muscle computed tomography (CT) images were
obtained at the level of the third lumbar vertebra. Skeletal muscle
area (SMA) was measured by inserting cross-sectional L3 CT
images into the open-source software BMI_CT (https://source-
forge.net/projects/muscle-fat-area-measurement) [23]. SMD was
measured using 3D Slicer, another open-source software (https://
www.slicer.org/) [24]. Two investigators determined the intraclass
correlation coefficients of SMI and SMD using the aforementioned
software, yielding values of 0.97 (range = 0.95�0.99) and 0.99
(0.97�0.99), respectively, as in our previous study [25]. Hounsfield
units (HU) ranging from �29 to +150 were used to measure SMA
(cm2), which was then normalized for height to obtain the SMI val-
ues (cm2/m2). SMD was calculated as the mean HU of SMA. SMG
was obtained by calculating the product of SMI and SMD values as
suggested by Weinberg et al. [7]. As numerous studies have been
conducted, we used an arbitrary unit (AU) instead of (cm2 £ HU/
m2) for SMG for simplicity. The optimum cutoff value of SMG in
patients with CRC was chosen by observing associations with OS,
as in our previous study [11]. Accordingly, 1640 and 1523 AU were
used as cutoff values for men and women, respectively.

Generation and validation of LASSO-based linear predictor skeletal
muscle gauge

Patients were assigned to the training and test sets via random-
ization. Using variables, such as sex, age, and BMI, a linear predic-
tor (LP) was generated using least absolute shrinkage and selection
operator (LASSO) regression, a method widely used to eliminate
variables of minimal significance while retaining those with suffi-
cient influence in the course of prediction. By applying this
method, variable selection and predictive signature building were
performed, and coefficient estimates were reduced to zero, where
such shrinkage was dependent on the parameter l. Cross-valida-
tion was performed 10 times to obtain the optimal values of l, dur-
ing which the minimum criteria were used. Subsequently, the
predictive prowess of the model obtained via LASSO regression
was analyzed by comparing the area under the receiver operating
characteristic (AUROC) curve and the area under curve precision
recall and performing decision curve analysis in the test set.

Statistical methods

Variance tests were used to analyze clinicopathologic charac-
teristics. To compare categorical variables, the x2 test or Fisher’s
exact test was used, whereas Student’s t test or Mann-Whitney U
test was used to compare continuous variables. Univariable analy-
ses were performed to obtain the odds ratios (ORs) of the single
variables in the logistic regression (LR) model, which found the
association between each variable and low SMG via one-to-one
matching. Multivariable analysis was used to select factors associ-
ated with low SMG via backward selection. AUROC curve values
were compared using the DeLong test. A two-sided P < 0.05 was
considered statistically significant. All statistical analyses were per-
formed using R version 4.2.0 (R Project, Institute for Statistics and
Mathematics, Vienna, Austria).

Results

Patient characteristics and clinicopathologic features

A total of 1642 patients with CRC were initially considered, and
1094 patients met the inclusion criteria and were included in the



Table 1
Comparison of clinicopathologic variables between the training and test set
(n = 1094)

Variables Subcategory Training set (n = 656) Test set (n = 438)
N (%) N (%) P

Sex Male 378 (57.6) 267 (61)
Female 278 (42.4) 171 (39) 0.300

Age (y) Mean (SD) 62.4 (11.9) 62.7 (11.7) 0.706
Height (m) Mean (SD) 1.6 (0.1) 1.6 (0.1) 0.844
Weight (kg) Mean (SD) 61.6 (10.6) 62 (10) 0.530
BMI (kg/m2) Mean (SD) 23.3 (3) 23.4 (3.1) 0.402
Smoking No 437 (66.6) 314 (71.7)

Yes 219 (33.4) 124 (28.3) 0.088
DM No 530 (80.8) 362 (82.6)

Yes 126 (19.2) 76 (17.4) 0.487
HTN No 377 (57.5) 253 (57.8)

Yes 279 (42.5) 185 (42.2) 0.973
Tumor location colon 476 (72.6) 309 (70.5)

rectum 180 (27.4) 129 (29.5) 0.512
NLR Mean (SD) 2.9 (2.6) 2.8 (2.0) 0.672
PLR Mean (SD) 176.9 (109.1) 176.3 (84.6) 0.915
LMR Mean (SD) 5.3 (2.3) 5.3 (2.3) 0.675
Hemoglobin Mean (SD) 12.6 (2) 12.7 (1.9) 0.159
Albumin Mean (SD) 4.2 (0.5) 4.2 (0.5) 0.758
ALBI score Mean (SD) �2.9 (0.4) �2.9 (0.4) 0.841
SMI Mean (SD) 48.7 (8.7) 48.1 (8.9) 0.328
SMD Mean (SD) 42.2 (8.6) 42.7 (8.2) 0.319

ALBI, albumin-bilirubin; BMI, body mass index; DM, diabetes mellitus; HTN, hyper-
tension; LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte
ratio; PLR, platelet-to-lymphocyte ratio; SMD, skeletal muscle radiodensity; SMI,
skeletal muscle index

J.Y. Lim et al. / Nutrition 115 (2023) 112146 3
study. The included patients were randomly divided into a training
set (n = 656; 60%) and a test set (n = 438; 40%). The clinicopatho-
logic features of patients in each set are presented in Table 1.
Between the training and test sets, none of the variables, including
sex, age, height, weight, and BMI, differed significantly.

Association of various factors with low SMG

A low SMG was identified in 142 (21.6%) and 90 (20.5%)
patients in the training and test sets, respectively. Once the factors
associated with low SMG were identified in the training set, uni-
variable analysis was performed to assess the strength of the asso-
ciations, the results of which are displayed in Table 2.
Table 2
Univariable analysis of factors associated with low skeletal muscle gauge in the
training set (n = 656)

Variables Subcategory OR (95% CI) P

Sex Male vs. female 6.427 (4.235�9.970) < 0.001
Age (y) 1.077 (1.056�1.099) < 0.001
Height (m) 0.917 (0.896�0.939) < 0.001
Weight (kg) 0.943 (0.924�0.961) < 0.001
BMI (kg/m2) 0.955 (0.898�1.016) 0.151
Smoking No vs. yes 0.393 (0.245�0.612) < 0.001
DM No vs. yes 1.166 (0.727�1.829) 0.512
HTN No vs. yes 1.368 (0.941�1.987) 0.099
Tumor location Colon vs. rectum 0.793 (0.510�1.209) 0.292
NLR 1.003 (0.926�1.072) 0.926
PLR 1.002 (1.0004�1.003) 0.014
LMR 0.978 (0.900�1.061) 0.607
Hemoglobin 0.760 (0.687�0.837) < 0.001
Albumin 0.383 (0.263�0.553) < 0.001
ALBI score 2.729 (1.764�4.247) < 0.001

ALBI, albumin-bilirubin; BMI, body mass index; DM, diabetes mellitus; HTN, hyper-
tension; LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte
ratio; OR, odds ratio; PLR, platelet-to-lymphocyte ratio
Generation of linear predictor of low SMG via LASSO

To obtain the LASSO-derived LP, a binomial deviance curve
was plotted with the horizontal axis representing log(l), with
l as a tuning hyperparameter, and vertical solid lines indicat-
ing binomial deviance and SE at each value of log(l). The two
vertical dotted lines represent the optimal log(l) values
obtained via the minimum criteria (left) and 1-SE criteria
(right). The chosen values were those calculated using the min-
imum criteria, with values of l = 0.005179939 and log (l) = �
5.262962. The optimized model was then trained with the
training set, yielding 10 non-zero coefficients and the intercept
of the LP-SMG (Supplementary Fig. 2).

Predictive qualities of the LP-SMG in the test set

After the identification of factors associated with low SMG and
the generation of a LP via LASSO for each group, multivariable anal-
ysis was performed on the test set to assess the validity of the asso-
ciations and, in particular, to verify the performance of the newly
constructed LPs after accounting for interfactor effects. The factors
associated with low SMG are summarized in Table 3. The LP-SMG
was found to be significantly associated with low SMG even after
adjusting for intervariable influence.

In addition, comparison of AUROC curve suggested that the
predictability of LP-SMG was consistent between the training set
and the test set, as shown in Figure 1. The relative predictive
strength of the LP-SMG compared with the other variables was
also verified using the AUROC curve values, as presented in
Figure 2. The LP-SMG exhibited superior predictive qualities com-
pared with these variables, as confirmed by a head-to-head com-
parison of AUROC curve values via the DeLong test. Furthermore,
decision curve analysis found a positive net benefit against the
three aforementioned variables (Fig. 3).

The performance of LP-SMG was additionally confirmed by
comparison of area under curve precision recall. The area under
curve precision recall value of LP-SMG (0.670; 95% CI,
0.624�0.712) was significantly higher than that of clinical varia-
bles, such as hemoglobin (0.351, 95% CI, 0.308�0.397), height
(0.428; 95% CI, 0.382�0.475), and sex (0.367; 95% CI, 0.323�0.413)
(Supplementary Fig. 3, Supplementary Table 1).

Optimal cutoff value of LP-SMG

The cutoff value for LP-SMG in predicting low SMG in the test
set was 0.269 (Supplementary Fig. 4, Supplementary Table 2).
Using this cutoff value, the actual counts and rates of SMG in the
test set were compared with the respective predicted values. Both
Table 3
Multivariable analysis of factors associated with low skeletal muscle gauge in the
test set (n = 438)

Variables Subcategory OR (95% CI) P

Sex Male vs. female —

Age (y) —

Height (m) —

Weight (kg) —

Smoking No vs. yes —

PLR —

Hemoglobin 0.802 (0.665�0.967) 0.078
Albumin 0.636 (0.347�1.167) 0.146
ALBI score —

LP-SMG 1329.431 (271.684�7667.996) < 0.001

ALBI, albumin-bilirubin; OR, odds ratio; PLR, platelet-to-lymphocyte ratio



Fig. 1. Comparison of AUROC curve value of LP-SMG in the training and test set. The
AUROC of LP-SMG was 0.846 (95% CI, 0.811�0.881) in the training set and 0.869
(95% CI, 0.824�0.913) in the test set (P = .427). AUROC, area under the receiver
operating characteristic; LP-SMG, linear predictor skeletal muscle gauge.
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high and low SMG were predicted with considerable accuracy by
LP-SMG in the test set (Supplementary Fig. 5).
Discussion

In this study, we developed a LASSO regression-based machine
learning model to predict low SMG. This model, the LP-SMG, had
Fig. 2. Comparison of AUROC curve value between LP-SMG and clinical variables in the t
hemoglobin (0.745, 95% CI, 0.695�0.795), height (0.731; 95% CI, 0.670�0.792), and sex
the receiver operating characteristic; LP-SMG, linear predictor skeletal muscle gauge.
high performance, with AUROC curve values of 0.846 and 0.869 in
the training and test sets, respectively. Moreover, it estimated low
SMG with enhanced precision than other clinical parameters, such
as sex, height, weight, and hemoglobin. Decision curve analyses
also supported this result, having a higher net benefit for LP-SMG.
To the best of our knowledge, this is the first study to suggest a
machine learning model that can predict SMG from clinical varia-
bles. Our study highlights the possibility of adopting sarcopenic
status as a simple tool for close and cost-effective patient monitor-
ing, while reducing the need for frequent CT scans in patients with
CRC.

SMI and SMD are the skeletal muscle�related indices most sig-
nificantly associated with clinical outcomes in patients with can-
cer. Patients with sarcopenia classified as having low SMI had a
significantly higher risk of postoperative complications and
reduced OS [26�30]. Myosteatosis, most widely diagnosed by low
SMD in CT images, is also known to be a powerful negative prog-
nostic indicator for various types of cancer [31�33]. Nevertheless,
it is labor-intensive, cost-inefficient, and, ultimately, not viable to
perform frequent CT scans to measure SMI or SMD. Therefore, sev-
eral attempts have been made to measure the sarcopenic status of
patients without using CT. Zhang et al. [18] developed nomograms
to predict low muscle mass and radiodensity in patients with gas-
tric cancer. Logistic regression analysis was used to generate the
nomogram, and it had considerable performance in predicting SMI
and SMD (SMI, AUROC = 0.809; 95% CI, 0.753�0.864, and SMD,
AUROC = 0.752; 95% CI, 0.694�0.810) in the validation cohort.
Yoon et al. [22] investigated the effect of a machine lear-
ning�based approach and found that the ensemble model of logis-
tic regression and a support vector classifier was the most
effective, with AUROC = 0.808. In that study, changes in BMI (%/50
d), albumin (%/50 d), prognostic nutritional index (%/50 d), NLR
(%/50 d), and PLR (%/50 d) were included in the model to predict
muscle loss during chemoradiotherapy in patients with esophageal
cancer. Although a series of studies has attempted to generate a
predictive model for skeletal muscle depletion, there are persisting
est set. The AUROC of LP-SMG (0.869; 95% CI, 0.824�0.913) was higher than those of
(0.729; 95% CI, 0.679�0.780), indicating stronger predictability. AUROC, area under



Fig. 3. Decision curve analysis between LP-SMG and clinical variables in the test set. The y-axes represent net benefit, and the x-axes represent threshold probability. The red
lines represent clinical variables, namely (A) hemoglobin, (B) height, and (C) sex, while the blue lines represent LP-SMG. The curves for assumptions of treating all patients
(gray lines) and no patients (black lines) are also plotted for comparison. LP-SMG, linear predictor skeletal muscle gauge. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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limitations. Some variables, such as gait speed or hand grip
strength, are not commonly measured in clinical practice; addi-
tionally, the performance of the models was not substantial
enough to warrant introducing the tests evaluating these variables
as regular clinical practice. Although the later predictive model in
patients with esophageal cancer improved performance by apply-
ing a machine learning approach, it is difficult to extend its applica-
tion to other types of cancer, especially when examining change in
serummarkers after chemoradiation therapy.

To generate a machine learning model, we included several
serum-derived markers, such as NLR, PLR, LMR, and ALBI scores.
The prognostic significance of systemic inflammation was already
observed in patients with CRC [34�36]. In addition, systemic
inflammation mediated by various cytokines is closely related to
the muscle [37]. Proinflammatory cytokines and molecules
released by tumors can impair protein synthesis and muscle regen-
eration, leading to sarcopenia [38]. Feliciano et al. [35] reported
that a greater NLR in the months before diagnosis was significantly
associated with sarcopenia at diagnosis in 2470 patients with
stages I to III CRC. Similarly, a recent study reported that a high
NLR was associated with a high risk of sarcopenia as well as
decreased hand grip strength, gait speed, calf circumference, and
arm circumference [21]. The ALBI score, composed of objective
parameters, such as albumin and bilirubin levels, was first sug-
gested as a simple variable to evaluate liver function [39]. The ALBI
grade determined by the ALBI score could predict the prognosis of
patients with liver diseases, especially those with hepatocellular
carcinoma or liver cirrhosis [40,41]. However, because liver func-
tion is deteriorated by increased proinflammatory cytokines in
cancer cachexia, the ALBI score can also function as a prognostic
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indicator in other patients, including those with gastric, pancreatic,
and CRCs [12,42�44]. Our recent study found that SMD was con-
siderably higher in the high ALBI group than in the low ALBI group
(43.3 HU versus 37.7 HU; P < .001) in patients with CRC [36]. Based
on these observations, we adopted the ALBI score as a significant
candidate for predicting sarcopenic status.

The AUROC curve value for the prediction of SMG was obtained
for each clinical parameter. We found that hemoglobin level,
height, weight, and sex showed relatively higher AUROC curve val-
ues in the test set (Supplementary Table 3). The difference in mean
SMG value between men and women has been reported before,
indicating the relevance of sex in predicting low SMG. Because
height and weight also show differences according to sex, they are
thought to have correlations as well. However, the large AUROC
curve value of hemoglobin is an interesting finding. Several studies
have reported an association between hemoglobin and sarcopenia
[45�47]. Because hemoglobin levels reflect the overall nutritional
status as well as chronic energy consumption, malnutrition results
in both anemia and sarcopenia, and chronic wasting in sarcopenia
may accelerate the consumption of hemoglobin [47].

In our study, NLR, PLR, and LMR exhibited lower AUROC curve
values than other clinical parameters. According to a previous
study on 123 hospitalized cancer patients, NLR had a sarcopenia
predictability (AUROC = 0.61; 95% CI, 0.51�0.68) superior to that
reported in our study [21]. Another prospective study of 670
patients with gastric cancer who underwent radical gastrectomy
also showed a sarcopenia predictive ability of NLR (AUROC = 0.663;
95% CI, 0.603�0.723) and PLR (AUROC = 0.655; 95% CI,
0.598�0.712) greater than those found in our study [48]. Although
the exact reason for this discrepancy is unclear, different criteria of
sarcopenia among the studies, different characteristics of the
included patients, and cancer types might have affected the results.
Further analysis of the mechanisms underlying these differences
should be tackled in future studies.

Our model has several merits. First, it is not contingent on sex,
making it easier to apply. Second, our predictive model is feasible
because it only requires routinely measured clinical variables and
blood test results. These clinical and blood-derived variables are
repeatedly obtained for patients with cancer. Because of these
characteristics, this model can be used to postoperatively predict
the sarcopenic status of patients, after chemotherapy, or during
regular follow-up. Additional research is required to determine
whether serial prediction using this model is clinically significant.

In this study, we focused on SMG rather than SMI or SMD.
Although SMI is the most commonly used indicator of sarcopenia,
a handful of studies found no difference of survival according to
the classification of SMI [49�52]. Similarly, although the signifi-
cance of SMD in patients with CRC was proven in our recent meta-
analysis, there remains a disadvantage that the exact cutoff value
of SMD is not the same for each study [32]. Based on this observa-
tion, we aimed to predict SMG, which was analyzed to be more
useful in our previous study than SMI or SMD. Interestingly, when
we generated additional LASSO-based prediction models using the
same training and test sets, the AUROC curve values for predicting
low SMI and SMD in the test set (SMI = 0.750; 95% CI, 0.695�0.804,
and SMD = 0.781; 95% CI, 0.729�0.832) (data not shown) were
lower than that of the LP-SMG.

This study has several limitations. Because this was a single-
center retrospective study, it was difficult to avoid selection bias.
The sex-specific cutoffs of SMG are still ambiguous because body
composition may differ according to cachexia status, cancer type,
or ethnicity. The clinical efficacy of model should also be confirmed
in patients with other types of cancer or different ethnicities. Fur-
thermore, the lack of external validation suggests a need for
additional measures to generalize the results of this study. Finally,
prediction of adequate sample size was a major obstacle, primarily
because of the lack of similar previous studies that could be used
as reference.

Conclusions

We developed an LP-SMG model for predicting sarcopenic sta-
tus, which had superior performance compared with other single
clinical variables. Machine learning is thought to be helpful in
improving the predictive power of models assessing sarcopenic
status. Our model can potentially be adopted as a screening tool to
detect sarcopenic status, and applying a machine learning model
might be beneficial in reducing the effort, cost, and radiation expo-
sure from conventional CT-based diagnosis.
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