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Abstract  

Study objectives: Polysomnography (PSG) scoring is labor intensive, subjective, and often ambiguous. 

Recently several deep learning (DL) models for automated sleep scoring have been developed, they are tied to a 

fixed amount of input channels and resolution. In this study, we constructed a standardized image-based PSG 

dataset in order to overcome the heterogeneity of raw signal data obtained from various PSG devices and 

various sleep laboratory environments. 

Methods: All individually exported European data format files containing raw signals were converted into 

images with an annotation file, which contained the demographics, diagnoses, and sleep statistics. An image-

based DL model for automatic sleep staging was developed, compared with a signal-based model and validated 

in an external dataset  

Results: We constructed 10,253 image-based PSG datasets using a standardized format. Among these, 7,745 

diagnostic PSG data were used to develop our DL model. The DL model using the image dataset showed similar 

performance to the signal-based dataset for the same subject. The overall DL accuracy was greater than 80%, 

even with severe obstructive sleep apnea. Moreover, for the first time, we showed explainable DL in the field of 

sleep medicine as visualized key inference regions using Eigen-class activation maps. Furthermore, when a DL 

model for sleep scoring performs external validation, we achieved a relatively good performance. 

Conclusion: Our main contribution demonstrates the availability of a standardized image-based dataset, and 

highlights that changing the data sampling rate or number of sensors may not require retraining, although 

performance decreases slightly as the number of sensors decreases.  

Key Words— Sleep Stages, Polysomnography, Dataset, Deep Learning, Computer Neural Network  
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Graphical abstract 
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Statement of Significance 

Polysomnography scoring is labor intensive and suffers from variability among scorers. Thus, various deep 

learning models have been developed to solve this problem; however, those based on signal data still have 

limitations for requiring to adjust when the sampling rate and amount of sensors change. Thus, although the 

performance of the DL model may be slightly decreased as the number of sensors decreased, we constructed a 

standardized image-based PSG dataset that does not require retraining regardless of the sampling rate and 

amount of sensor change.. It also confirmed the model generalization on the external validation. Therefore, this 

image-based PSG dataset can make the deep learning model more widely applicable compared to existing 

models that are tied to a fixed amount of input channels and resolution. 
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Introduction 

Laboratory-based polysomnography (PSG), also known as the study of sleep, is currently the gold standard for 

the diagnosis of sleep-disordered breathing, such as obstructive sleep apnea (OSA). It uses a multiparametric 

measurement apparatus that records several physiological signals in parallel, including an electroencephalogram 

(EEG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), blood oxygenation, 

airflow, and respiratory effort. Thus, understanding the meaning of PSG data requires sleep scoring by a sleep 

technologist [1]. However, these expert-based sleep-stage systems have certain practical limitations. First, 

manual scoring methods are time-consuming and labor intensive, as sleep staging is still largely performed by 

clinicians in sleep clinics, even though the process is guided by well-established manuals. In addition, these 

time-consuming manual-scoring methods are unsuitable for processing large-scale data [2, 3]. Second, inter-

scorer variability in sleep stage scoring is unavoidable [4-6]. A discrepancy in scoring is primarily detected in 

the combination of wake-N1, N1-N2, and N2-N3 between sleep centers [7]. Moreover, the inter-operator 

reliability of human expert scorers was found to be less than 0.8 as an inter-rater agreement, according to a 

recent meta-analysis study [8]. Third, there is a growing demand for self-monitoring of sleep status at home [9-

11]. Therefore, automated sleep stage scoring using artificial intelligence has been thoroughly investigated in 

the field of sleep medicine. To date, several automatic sleep stage classification methods have been published. 

However, automatic sleep stage classification methods based on the signal dataset are currently not widely used 

because these are trained on a specific set of signal types and do not appropriately operate on datasets with 

different modalities. . Therefore, the sleep stage recognition technique requires manual examination of PSG by a 

sleep expert. To improve this, we propose a general deep learning (DL)-based sleep stage scoring system that 

uses an image-based PSG dataset. 

 

Methods 

This study was approved by the Institutional Review Board of Seoul National University Hospital (Seoul, 

Republic of Korea: No. C-2007-179-1143) and Chuncheon Sacred Heart Hospital, Hallym University College of 

Medicine (Chuncheon, Republic of Korea: No. 2021-03-005). A total of 10,253 PSG data points were used to 

build an image-based PSG dataset, which was constructed on the cloud server of the Korea National Information 

Society Agency (https://safezone.aihub.or.kr). Written informed consent was waived because the database was 

constructed in a deidentified manner.  
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Construction of an Image-Based Polysomnography Database 

We collected PSG data from patients with sleep-disordered breathing from several sleep centers (Seoul 

National University Hospital, Hallym University Hospital, Seoul Sleep Center, and Lee & Hong 

Otorhinolaryngology Clinics), and constructed a new image-based PSG dataset. The CONSORT flow diagram 

for dataset construction and model development is given in Supplementary Figure 1. All numbers shown in the 

figure represent the number of PSG studies. Each sleep center recorded biosignals during sleep using 

computerized PSG devices such as Embla (Natus Medical, San Carlos, CA, USA) and Nox (Nox Medical, 

Reykjavik, Iceland).  

All PSG data were scored by a sleep technologist, and then reviewed by another sleep technologist and a 

sleep specialist. The scoring process was conducted in accordance with the guidelines of the American 

Academy of Sleep Medicine (version 2.6). Especially, sleep stages were labeled in five classes: wake, non-rapid 

eye movement (non-REM) stage 1 (N1), non-REM stage 2 (N2), non-REM stage 3 (N3), and REM. After 

collecting the labeled PSG data, we extracted raw biosignals data into the European Data Format (EDF), and 

converted them into images using a developed program named ―standard viewer‖. We also extracted all labels 

and statistical results (such as total sleep time, sleep latency, or apnea-hypopnea index (AHI)), and integrated 

them into JSON formatted files which were used as annotation files when DL models were trained (Figure 1A 

and Supplementary Figure 2). Each phase of the data construction procedure was conducted automatically by 

employing a robotic process automation tool.  

During this procedure, data were de-identified by removing each patient’s personal information such as name, 

patient number, and birth date, and the data of each patient were assigned a serial number. Figure 1B shows the 

format of the newly developed image-based PSG data. Each image had predefined areas for each channel, and 

the defined channel locations were the same for all images. These image-based data included the following 11 

biosignals: EEG (C3–M2, C4–M1, O1–M2, O2–M1), EOG (E1–M2, E2–M1), chin EMG, ECG, airflow 

(oronasal thermistor), thoracic movement, abdominal movement, snoring sensor (audio volume), leg EMG (left 

and right leg), and oxygen saturation (85–100%, 40–100%). Thus, each image was 30 s long, with 11 channels 

of data corresponding to an epoch, and was displayed as a 1920 × 1080 high-resolution PNG file. The raw PSG 

data were also preprocessed with a 4th-order Butterworth low-pass filter, high-pass filter, and band-pass filter 

before being converted into an image. The cut-off frequencies recommended by the AASM scoring manual 

were used. Therefore, visual clues or features that can be found in biosignals, such as sleep spindles and K-

complexes, are observed at a level similar to that used in actual clinical settings. Specifically, the change in the 
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physical value represented by a pixel varies depending on the signal type, as shown in Supplementary Table 1. 

Moreover, for cases where the measured data exceeded the set graph range, images were generated to allow 

graphs of the same signal to overlap. For example, the four graphs representing EEG signals can overlap with 

each other, while the two graphs representing EOG signals can also overlap with each other. Thus, during the 

image dataset construction, we repeatedly confirmed that all channels were appropriately clipped to the 

respective predefined areas while being converted into images. Additionally, it was checked if the examiner 

could identify overlapping biosignals by each one. Finally, quality validation of the constructed dataset was 

performed. Two sleep experts (one sleep technologist and one sleep specialist) from outside the medical center 

where the data were collected validated the quality of each set of converted images and an annotation file. They 

compared the signal graphs obtained by RemLogic and Noxturnal (PSG data viewers) with the images generated 

in this study (one epoch at a time). Both experts examined whether the images were properly converted and 

synchronized with the exported sleep-related events, as well as whether the exported events were correctly 

labeled (i.e., scored) based on the AASM scoring manual. During the examination, the data that were not 

synchronized or where the graph shapes did not match among themselves were either revised or excluded. 

Moreover, if there was even one epoch that did not match the original data, the whole PSG data, including that 

epoch, were excluded. Subsequently, the image dataset passed by both experts was used as the final dataset.  

 

Neural Network Architecture for Image-Based Polysomnography Dataset 

 To date, convolutional neural network (CNN) with a bidirectional long short-term memory (Bi-LSTM) have 

been a common architecture for automated sleep-stage classification [12]. The learning process on 

DeepSleepNet was first completed in the CNN part without Bi-LSTM. Then, Bi-LSTM was added to the final 

feature map layer and trained to exploit sequential features between epochs [12, 13]. We initially utilized two 

different DL models: DeepSleepNet and ResNet101 combined with Bi-LSTM. After comparing the predictive 

performance between the two models, DeepSleepNet was selected as the primary DL model for the signal-based 

PSG dataset, given its proven efficacy for extracting features from raw signal data. In contrast, the ResNet101 

2D convolutional layer was primarily designed for image-based data, which is a challenge to use on signal-

based data. During the process, we attempted to replace all the 2D convolutional layers in ResNet101 with 1D 

convolutional layers. However, the desired results were not obtained as the training did not converge well; thus, 

it was concluded that image-based models and signal-based models require different approaches. Therefore, 

DeepSleepNet was finally chosen for the signal-based PSG dataset, which involved feature extraction through 
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large kernel sizes and strides for classification. Moreover, ResNet101 and Bi-LSTM was used for the image-

based PSG dataset, given its suitability for extracting features from images through repeated iterations of small 

kernel sizes and strides. Figure 2 shows the overall flow of the DL algorithm using an image-based PSG dataset. 

First, we preprocessed the raw PSG signal data of size C × T (C: channel and T: time) according to the 

preprocessing procedure, such as sampling, filtering, and normalization. Subsequently, we drew the signal on 

the image (W: width and H: height), and the images were archived into a dataset. The newly developed image-

based dataset was then used as an input to the DL model. ResNet101 were added to extract spatial information, 

and the Bi-LSTM  was added to extract temporal information. Subsequently, we proceeded with training and 

testing processes. During the training process, we applied an image data augmentation scheme called LineOut 

and LineMix (Supplementary Figure 3, 4, and comments). Our code is publicly accessible at 

https://github.com/ai-for-sleep/sleep_stage_classification_for_image. 

 

Evaluation and Comparison of the Deep Learning Model Performance According to the Dataset 

We conducted a comparison between the two DL models with the same original PSG dataset to determine 

whether the performance of DL using an image-based dataset was better or comparable than that using a signal-

based dataset. The overall flow for training and testing using the DL algorithm is shown (Supplementary Figure 

5). First, we preprocessed raw PSG data by filtering and scaling. For filtering, we used high-path, low-path, and 

notch filters. To normalize the descriptor values, we added a MinMax scaler. Next, two different paths for 

generating signal- and image-based data were employed. PSG record filtering generates a dataset by excluding 

specific patients who do not have the required signals. The preprocessed PSG signal data were provided directly 

as inputs to the network per epoch unit. We employed DeepSleepNet as a model for automatic sleep-stage 

scoring using a signal-based PSG dataset. Specifically, to input an image-based PSG dataset, we first scaled the 

prepared image data to 224 × 224 and then created a test dataset by randomly selecting test data from the dataset 

(the random seed was fixed). At this time, the selected testing dataset was used for both signal- and image-based 

data training to consistently compare both methodologies. The dataset, excluding the test dataset, was then 

divided into five folds. Each fold was unique, and there was no common data among them. One-fold was 

designated as the validation dataset, whereas the remaining four folds were designated as the training dataset. 

The DL model validated every training epoch, and the training was stopped when there was no improvement in 

the accuracy performance for the last 10 training epochs. When all five models for the folds were completed, the 

probabilities of each model were extracted from the test dataset and averaged to obtain the final prediction 
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results. Finally, we assessed the model performance in terms of accuracy, micro-F1 score, and weighted-F1 

score to determine the effect of sleep stage class imbalance in this dataset. The weighted accuracy was 

calculated as the average per-class stage accuracy. 

 

Visualization of the Class Activation Map of the Images 

We employed Eigen-class activation maps (CAM) to visualize a model decision made during inference 

processing [14-16]. Eigen-CAM is a visualization method that employs singular value decomposition. It 

computes and visualizes the principal components of the learned features/representations from convolutional 

layers. 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡 represent the input and output feature maps, respectively. 𝑉1 is the first eigenvector in the 𝑉  

matrix. 𝐿𝐸𝑖𝑔𝑒𝑛−𝐶𝐴𝑀  is visualized through the operation of the output feature map 𝑋𝑜𝑢𝑡  and first eigenvector 𝑉1 of 

the output feature map. 

 𝑋𝑜𝑢𝑡    𝑋𝑖𝑛 (1) 

 𝑋𝑜𝑢𝑡    𝑉
  (2) 

 𝐿𝑒𝑖𝑔𝑒𝑛−𝐶𝐴𝑀  𝑋𝑜𝑢𝑡  𝑉1 (3) 

 

Results 

The composition of the dataset according to PSG type, sex, age, and PSG device is shown in Supplementary 

Table 2. This public dataset includes annotation files corresponding to each image file. In addition, in this 

dataset, every 10,253 PSG recordings contained each annotation file, including clinical medical information, 

demographic data, and sleep-related events. Specifically, sleep-related event labels include 1) five classes of 

sleep stages, 2) respiratory events (apnea, hypopnea, and desaturation), and 3) movement events (limb 

movement, periodic limb movement, and arousal events). 

 

 Performance of the Deep Learning Model Using the Image-Based Dataset 

From the final image-based PSG dataset, we selected 7,745 patient data from diagnostic PSG (3,464 cases with 

the Nox A1 PSG system from Nox Medical, and 4,281 cases with the Embla N7000 series PSG system from 

Natus Medical) (Supplementary Table 3). To evaluate the performance of the DL algorithm, we split our data 
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into training, validation, and test datasets at a ratio of 80/10/10 by patients (Table 1). In our study, we utilized an 

ensemble five-fold model for calculating the F1-score and generating the Confusion matrix. Furthermore, we 

employed a trained model using datasets divided at a ratio of 80/10/10 by patients for the remaining 

experiments. It is important to note that the same test dataset was used in all experiments. The diagnostic PSG 

cases and overall epoch volume according to the device or the institute are presented in Supplementary Table 4. 

For the five-stage classification of sleep stages (wake/N1/N2/N3/REM), we utilized ResNet101 and LSTM to 

extract the local spatiotemporal characteristics of 30-second PSGs. Our DL model trained with an image-based 

PSG dataset achieved an epoch-by-epoch accuracy of 82.91%, micro-F1 score of 82.90%, and weighted-F1 

score of 82.76%. Additionally, when AHI values were converted into standard clinical categories of normal, 

mild, moderate, and severe diseases, our DL model trained with the image-based PSG dataset showed an overall 

accuracy of 86.84% for normal, 86.62% for mild, 84.44% for moderate, and 80.74% for severe diseases (Table 

2 and Supplementary Figure 6). The sleep metrics trends exhibit a declining pattern in accuracy as the severity 

level increases [39, 40]. 

 

Comparison of Deep Learning Performance between Image-Based and Signal-Based Datasets 

To identify whether the image-based PSG dataset could be useful for improving the performance of the DL 

algorithm, we compared the model performance of the image-based and signal-based datasets. The model 

performance obtained using the image-based PSG dataset for the five sleep classes was 82.91% overall 

accuracy, 82.90% macro F1-score, and 82.76% weighted F1-score, whereas that obtained using the signal-based 

PSG dataset was 81.88% for overall accuracy, 80.89% for macro F1-score, and 81.62% for weighted F1-score. 

The performance of the DL model obtained using the image-based PSG dataset was similar to the performance 

of the DL model obtained using the signal-based PSG dataset (Table 3). For the model performance of all the 

tested epochs, a confusion matrix was generated (Figure 3). When considering all epochs, the model using the 

image-based dataset scored the Wake, N1, N2, N3, and REM stages correctly 90%, 62%, 84%, 83%, and 89% 

of the time, respectively. Meanwhile, the model using the signal-based dataset correctly scored Wake, N1, N2, 

N3, and REM stages 86%, 68%, 80%, 83%, and 91% of the time, respectively. To compare the prediction 

performance between the two datasets, we used the area under the precision-recall curve (AUPRC) and the area 

under the receiver operating characteristic curve (AUROC) because the statistical comparison of overall 

accuracy scores was difficult between the two datasets (Figure 4). Although we could not access statistical 

differences, our findings showed that both AUPRC and AUROC were visually similar in each sleep stage 
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between the signal- and image-based datasets. Next, we evaluated the difference in DL model performance 

based on the PSG device (Table 3). Various studies have previously reported that when a DL model for sleep 

scoring performs external validation, performance decreases significantly. Similarly, in this study, when training 

and testing were performed using the dataset obtained from different PSG devices, the DL model using the 

signal-based dataset showed a significant decrease (4–8%), whereas the DL model using the image-based 

dataset revealed a relatively smaller decrease in its performance (approximately 4%). 

 

Visualization of Major Determining Area to Score Sleep Stage in the Deep Learning Model 

To determine which area was the deciding component for classification in the DL model using the image-

based PSG dataset, we used Eigen-CAM. The final convolution layer contains spatial information indicating 

discriminative regions to make classifications and generates a spatial heatmap from the activations of the 

previous convolutional layer. Figure 5A shows these discriminative parts representing the image data of each 

sleep stage. In addition, we visualized the discriminative region for sleep staging by averaging each Eigen-

CAM, which consisted of 10,000 images, to demonstrate where the model usually focused on each class (Figure 

5B). Additionally, the discriminative regions for sleep staging obtained by averaging each Eigen-CAM are very 

similar in each sleep stage (Supplementary Figure 7). Because the image formats, such as the height, width, or 

position of the channels, are always the same, the CAM can visualize which parts of the images contribute to the 

model’s decisions while maintaining consistency. Thus, discriminative information could provide the sleep 

clinician with an additional message, such as the focusing area for manual sleep staging. Interestingly, we 

investigated how each channel affects DL model performance during sleep stage classification. When only one 

channel in each image-based dataset was cleared, we found that EEG, followed by EOG, was the most 

important predictor of the DL model for sleep staging (Figure 6A). Meanwhile, when only one channel is left, 

we discovered that EEG and EOG values are crucial in reducing error and improving prediction accuracy when 

included in the DL model using an image-based dataset (Figure 6B). Similar findings were also obtained when 

we investigated the channel effects on the DL model performance according to sleep stages. 

External Validation of the Image-Based Deep Learning Model with SHHS dataset 

To evaluate the generalization ability of our image data format, we conducted an external validation with an 

open-access dataset. We utilized 2,652 PSG data from Sleep Heart Health Study (SHHS) Visit 2 dataset as the 

external data and converted them to our image data format. Since each PSG data from SHHS Visit 2 dataset has 

fewer channels compared to our dataset (e.g., it has only 2 EEG channels, whereas our data has 4 EEG 
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channels), we considered two approaches to address this issue. The first approach is called the "blanked" 

method, which involves treating the areas corresponding to non-existent channels (such as acceleration, O1-M2 

and O2-M1 from EEG, and snoring signals etc.) as blanks (Figure 7A). The second approach referred to as the 

"duplicated" method. If a signal does not exist, the image is drawn using an available signal of the same type as 

the non-existent one (Figure 7B). We replaced the missing 2 EEG channels O1-M2 and O2-M1 with C3-M2 and 

C4-M1, and for the breathing-related signals, we duplicated Airflow (thermistor, refer to SHHS dataset website: 

https://sleepdata.org/datasets/shhs/pages/11-montage-and-sampling-rate-information-shhs2.md) signal to draw 

non-existent nasal pressure signal. Although both methods yielded similar performance, the "duplicated" 

method demonstrated slightly better results. With this external dataset, which was not used for training our 

image-based model, we achieved relatively good performance for Wake, N2, N3, and REM stages (Figure 7).  

 

Discussion 

To date, several researchers have attempted to develop an automatic classification of sleep stages using DL 

models, but only a few studies have demonstrated its effectiveness [17-22]. Therefore, we attempted to construct 

a standardized image-based database that is more effective for artificial intelligence learning, comprising a 

complete dataset that consists of the relevant polysomnographic and demographic data for all patients covered 

by the database. This database also includes polysomnographic data obtained from multiple sleep centers using 

two different types of PSG devices. To test our proposed PSG database, we developed a DL algorithm for 

automated sleep stage classification using the image-based PSG dataset and compared its performance with that 

of the DL algorithm using the raw signal-based PSG dataset. Although the processing of raw signals into images 

may impair the learning process because most of the image area is expressed as a black background, our results 

demonstrate that the automated sleep stage classification trained on this standardized public dataset could 

achieve a similar performance compared to those based on the raw signal. Additionally, our standardized image-

based database showed similar performance in the external validation test. 

Sleep-EDF, Sleep-EDF [Expanded], the Montreal Archive of sleep studies, the Sleep Heart Health Study 

collection, and the Massachusetts General Hospital (MGH) sleep laboratory database are well-known PSG 

datasets that exist, regardless of their public availability [24-27]. Of these datasets, the MGH database was the 

largest, with PSG recordings from 10,000 subjects. The main goal of constructing our PSG database was to 

create an optimized dataset for DL. Recent studies have shown that deep neural networks that use spectrogram 

representations of EEG segments outperform those that use raw EEG segments in terms of accuracy [19, 20, 
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28]. Similar to these reports, sleep technologists still scored the PSG data for visual pattern recognition. 

However, the spectrogram data-based methods need to extract a 2D amplitude signal, having time and frequency 

as its dimensions for each channel. Moreover, our image-based method contains all channels in one gray image. 

It means that our image-based data is much more efficient and even when using explainable artificial 

intelligence methods such as CAM, our image-based data are more intuitive to interpret than spectrogram data. 

Moreover, our image-based PSG dataset, which contained more than 10,000 subjects, is one of the largest PSG 

datasets linked to relevant clinical data. Similar to the MGH dataset, our image-based PSG database consisted of 

a mixture of diagnostic and titration protocols. Specifically, our database integrates 11 biosignals from PSG and 

annotated files for patient demographics and sleep statistics. Furthermore, when we considered clinical PSG 

scoring, we realized that high-quality PSG scoring of healthy people was insufficient. In this regard, our image-

based database not only has the largest size but also has a greater proportion of unhealthy subjects. Interestingly, 

unlikely the signal-based PSG dataset, our image-based PSG dataset could add a unique direction to real-world 

applications. As a standardized form of the PSG dataset expressed as an image file is proposed in this study, it is 

possible to overcome the heterogeneity of PSG recordings from different sleep centers. Specifically, when 

training and test processes were performed using data obtained from different PSG devices, it was revealed that 

the DL model with the image-based PSG dataset outperformed the one with the signal-based dataset. 

Generally, DL is known as a black-box model, which makes it difficult to provide a logical basis for output 

results [29, 30]. DL has recently been studied in the field of explainable artificial intelligence [31-33]. However, 

this is still a difficult problem. Thus, as a black box model with a multilayer nonlinear structure, deep neural 

networks are often criticized for being non-transparent, with their predictions being untraceable by humans [34]. 

In automatic sleep-staging systems, black-box skepticism remains one of the main questions regarding their 

clinical value and adoption because sleep stages are often ambiguous, and different human experts tend to 

disagree to some extent [35, 36]. However, when developing a model using image-based learning, several 

methods have been introduced to determine which part influences the output decision. Among these methods, 

CAM technology provides visualization of the final decision [15, 37, 38]. Therefore, it can learn based on 

images and obtain visualization information regarding the output of the model during inference, allowing the 

physician to effectively utilize the evaluation results. For these reasons, our approach has the advantage of being 

able to use existing SOTA image recognition models regardless of the input sampling rate. Importantly, when 

compared to research that focuses on frequency domain data, our approach allows medical staffs to confirm the 

reasoning behind the classification performed by deep learning models through an Eigen CAM on the time axis 
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of the PSG data they are viewing. These findings revealed that the DL model evaluated wake status mainly by 

respiration or chest/abdominal movements rather than EEG, whereas the inference of REM sleep depended on 

EOG and chin EMG rather than EEG (Supplementary Figure 7). DL methods using signal-based data have an 

insufficient effect on the extraction of EEG frequency information, resulting in a poor classification 

performance, particularly for N1 and REM. Thus, our image-based dataset provides an opportunity to improve 

the performance of N1 and REM classification. However, when the relevance of the entire biosignal channel 

was evaluated, omitting the EEG channel, followed by the EOG channel, significantly decreased the accuracy of 

our DL model (Figure 6). The remaining biosignal channels had a minimal effect on the accuracy of the DL 

model. 

In addition, our standardized image-based database offers several advantages. Because PSG data are 

multichannel, it is essential to build a multichannel model when using the original raw signal data. Therefore, it 

may be difficult to learn multichannel features effectively because of the increase in complexity; however, with 

image-based data, multichannel signal data can be captured as a single-channel image for learning, lowering the 

complexity of DL models. Moreover, although higher frequencies could not detect in the image-based PSG 

dataset, it does not require retraining when the sampling rate and the number of sensors change. This makes the 

proposed dataset more widely applicable compared to existing ones, which are tied to fixed amounts of input 

channels at specific resolutions. Finally, we tried to test for external validation regarding image-based datasets 

using the raw signal of SHHS. On the external validation, the DL algorithm using the image-based dataset 

showed relatively good performance for each sleep stage; thus, we could confirm the model generalization 

based on the image dataset. 

In conclusion, we constructed an image-based PSG database, one of the largest PSG databases linked to 

relevant clinical data. Thus, this database consists of all 11 biosignal waveform images, except the numeric 

parameters, as one image file, and each dataset also included patient demographics and sleep statistics. 

Additionally, the DL algorithm using the image-based PSG dataset achieved a similar performance, compared to 

those using this signal-based PSG dataset. When we performed the external validation, we confirmed the 

reliable results. Therefore, these findings indicate that our standardized image-based dataset may be effective for 

the development of DL-based automatic classification of sleep stages. 
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Data Availability 

Although the full dataset cannot be made publicly available because of legal restrictions imposed by the 

Korean government in relation to the Personal Information Protection Act, if some investigators wish to use this 

image-based PSG data, they could access it after obtaining the relevant permit from the Korean National 

Information Society Agency (https://eng.nia.or.kr/site/nia_eng/main.do) has been granted. 
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Figure legends 

Figure 1. (A) Example of an image-based polysomnography data file (B) Schematic flow of construction of 

polysomnography database 

Figure 2. Framework for automatic sleep-stage classification: after performing preprocessing such as sampling, filtering, and 

normalization on the input raw signal dataset, a standardized image dataset was created. Next, to test the five-class sleep-

stage scoring, the standardized image dataset was added into the deep learning model, which combines the bidirectional long 

short-term memory network (Bi-LSTM) and fully connected layer with the convolutional neural network. 

Figure 3. Confusion matrix of ensemble five-fold models for automatic sleep-stage classification (A) Signal-based PSG 

database, (B) Image-based PSG database.  

Figure 4. Comparison of the predictive performance between signal- and image-based datasets. The performance was 

evaluated using both the area under the precision recall curve (AUPRC) and are under the receiver operating characteristic 

curve (AUROC).   In this experiment, we use the test dataset split by patients. 

Figure 5. (A) Class activation maps (CAM) for each sleep stage: a map is generated for each class of the network by 

obtaining the weighted sum of the last convolutional features using the fully connected layer weights. (B) Average of CAM 

for each sleep stage: it is obtained from about 10,000 images to see where the model usually focuses on each class. In this 

experiment, we use the test dataset split by patients. 

Figure 6. Evaluation of the weighted-F1 score to understand the effect of each biosignal on the performance of the DL model: 

(A) when only one specific channel is erased, (B) when only one specific channel is left, (C) performance when one specific 

channel is erased in each sleep stage, and (D) performance when one specific channel is left in each sleep stage. In this 

experiment, we use the test dataset split by patients. 

Figure 7. Confusion matrix of ensemble five-fold models for external validation of SHHS dataset. (A) Confusion matrix 

evaluation to convert non-existent channels to blank images, (B) Confusion matrix evaluation to convert non-existent 

channels to duplicate images, (C) Table representing the F1-score for A and B. 
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List of Tables 

Table 1. Profile of datasets according to the severity of obstructive sleep apnea.  Diagnostic PSG data were 

divided into training, validation, and test data in ratio of 80:10:10. The upper value in each cell represents the 

number of epochs, and the value in parentheses represents the proportion of each sleep stage according to the 

severity of sleep apnea.    

Dataset Severity Wake N1 N2 N3 REM Total 

Training 

Normal 
115,523  

(19%) 

51,967  

(8%) 

222,849  

(37%) 

116,409  

(19%) 

103,701  

(17%) 

610,449 

(100%) 

Mild 
134,191  

(20%) 

65,712  

(9%) 

249,704  

(37%) 

112,961  

(17%) 

113,279  

(17%) 

675,847 

(100%) 

Moderate 
190,007  

(21%) 

104,538  

(12%) 

326,076  

(36%) 

135,978  

(15%) 

144,842  

(16%) 

901,441 

(100%) 

Severe 
621,320  

(26%) 

460,710  

(19%) 

795,038  

(32%) 

244,743  

(10%) 

313,701  

(13%) 

2,435,512 

(100%) 

Total 
1,061,041  

(23%) 

682,927  

(15%) 

1,593,667  

(35%) 

610,091  

(13%) 

675,523  

(14%) 

4,623,249 

(100%) 

Validation 

Normal 
16,511  

(21%) 

7,512  

(9%) 

29,095  

(36%) 

14,191  

(18%) 

12,773  

(16%) 

80,082 

(100%) 

Mild 
13,596 

(18%) 

7,271  

(10%) 

26,332  

(36%) 

13,998  

(19%) 

12,101  

(17%) 

73,298 

(100%) 

Moderate 
22,302  

(20%) 

13,034  

(11%) 

41,229  

(37%) 

16,990  

(15%) 

18,823 

(17%) 

112,378 

(100%) 

Severe 
79,029  

(26%) 

61,499  

(20%) 

97,725  

(32%) 

28,374  

(9%) 

37,746  

(13%) 

304,373 

(100%) 

Total 131,438  89,316  194,381  73,553  81,443  570,131 
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(23%) (15%) (35%) (13%) (14%) (100%) 

Test 

Normal 
10,791  

(20%) 

4,901  

(9%) 

19,994  

(36%) 

9,866  

(18%) 

9,526  

(17%) 

55,078 

(100%) 

Mild 
19,434  

(21%) 

8,471  

(9%) 

34,142  

(38%) 

14,373  

(16%) 

14,256  

(16%) 

90,676 

(100%) 

Moderate 
24,057  

(21%) 

12,949  

(11%) 

41,308  

(36%) 

16,253  

(14%) 

18,986  

(17%) 

113,553 

(100%) 

Severe 
80,373  

(26%) 

57,537  

(18%) 

104,671  

(33%) 

33,208  

(10%) 

41,475  

(13%) 

317,264 

(100%) 

Total 
134,655  

(23%) 

83,858  

(15%) 

200,115 

(35%) 

73,700  

(13%) 

84,243  

(14%) 

576,571 

(100%) 
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Table 2. Performance of deep learning model using the image-based dataset according to the severity of 

obstructive sleep apnea. 

Severity Accuracy (%) Macro F1-score (%) Weighted F1-score (%) 

Normal 86.84 83.60 86.54 

Mild 86.62 
83.37 86.30 

Moderate 84.44 81.98 84.11 

Severe 80.74 80.68 80.66 

The accuracy was calculated as the ratio of the number of correctly classified instances to the total number of instances in the 

dataset. The macro F1-score, which is the unweighted average of the F1-score for each class, was used as an evaluation 

metric.  

The weighted F1-score accounts for the class imbalance in the dataset; it calculates the F1-score of each class weighted by its 

frequency and was also used as an evaluation metric. 
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Table 3. Comparison of deep learning model performance according to the origin of dataset and 

polysomnography device. 

Training 

data 

Test 

data 

Signal-based dataset Image-based dataset 

Accuracy (%) 
Macro 

F1-score (%) 

Weighted 

F1-score (%) 
Accuracy (%) 

Macro 

F1-score (%) 

Weighted 

F1-score (%) 

All All 81.48 80.89 81.62 82.91 82.90 82.76 

Embla Nox 74.13 72.75 74.19 78.63 77.53 78.68 

Embla Embla 82.83 82.06 82.88 83.35 82.43 83.24 

Nox Embla 76.40 74.79 76.29 77.11 74.77 76.16 

Nox Nox 80.55 79.98 80.69 81.94 80.79 81.71 

The accuracy was calculated as the ratio of the number of correctly classified instances to the total number of instances in the 

dataset. The macro F1-score, which is the unweighted average of the F1-score for each class, was used as an evaluation 

metric.  

The weighted F1-score accounts for the class imbalance in the dataset; it calculates the F1-score of each class weighted by its 

frequency and was also used as an evaluation metric. 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad242/7273094 by Seoul N

ational U
niversity Lib. user on 14 Septem

ber 2023



Acc
ep

ted
 M

an
us

cri
pt

 

26 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad242/7273094 by Seoul N

ational U
niversity Lib. user on 14 Septem

ber 2023



Acc
ep

ted
 M

an
us

cri
pt

 

32 

 

Figure 7 
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